AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

sexta-feira, 30 de agosto de 2013

HIGH PERFORMANCE CONTROL OF A THREEPHASE PWM RECTIFIER YIN BO NATIONAL UNIVERSITY OF SINGAPORE



HIGH PERFORMANCE CONTROL OF A THREEPHASE
PWM RECTIFIER
YIN BO
(M.Eng., Wuhan University,China)
A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARMENT OF ELECTRICAL AND COMPUTER ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE
2008
DOWNLOAD FULL THESIS
http://www.mediafire.com/?1lvzrknovicuth2

New Energy-efficient High-voltage DC-DC Power Conversion Technology by Wang Huai


New Energy-efficient High-voltage
DC-DC Power Conversion Technology
Submitted to
Department of Electronic Engineering
電子工程學系
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
哲學博士學位
by
Wang Huai
王懷
March 2012
二零
DOWNLOAD
http://www.mediafire.com/?gwqda8k1hy9biy3

LOW-POWER PFC AND FORWARD CONVERTERS – METHODS TO IMPROVE PERFORMANCE Thesis for the degree of Doct or of Science in Technology

 
 
Helsinki University of Technology Institute
of Intelligent Power Electronics Publications
Espoo 2004 Publication 8
LOW-POWER PFC AND FORWARD CONVERTERS –
METHODS TO IMPROVE PERFORMANCE
Thesis for the degree of Doctor of Science in Technology
Vesa Tuomainen
Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of
the Department of Electrical and Communications Engineering for public examination and debate in
Auditorium S4 at Helsinki University of Technology (Espoo, Finland) on the 4th of June, 2004, at 12
noon.
Helsinki University of Technology
Department of Electrical and Communications Engineering
Power Electronics Laboratory 
DOWNLOAD FULL

FACTOR CORRECTION CONVERTERS FOR DISTRIBUTED POWER SYSTEM by MATADA MAHESH



FACTOR CORRECTION CONVERTERS FOR
DISTRIBUTED POWER SYSTEM

MATADA MAHESH
Dissertation submitted in partial fulfillment of the requirements for the
degree ofDoctor of Philosophy In Electrical Engineering
Under the supervision of
Prof. Anup Kumar Panda
Department of Electrical Engineering
National Institute of Technology, Rourkela
October 2011
ABSTRACT
In present situation, the increase in the utilization of computers, laptops,
uninterruptable power supplies, telecom and bio-medical equipments has become
uncontrollable as its growth is rising exponentially. Hence, increase in functionality of such
equipments leads to the higher power consumption and low power density which provided a
large market to distributed power systems (DPS). The development of these DPS posed
challenges to power engineers for an efficient power delivery with stringent regulating
standards; this is the motivation and driving force of this research work. The objective is to
minimize the switching losses of front-end converters employed in DPS, with the primary
aim of achieving nearly unity power factor operation of converters.
Single-phase and three-phase rectifiers are increasingly used in the field of alternating
current – direct current (AC-DC) power converters as front-end converters in DPS. For
power factor correction (PFC) stage, conventional single-phase AC-DC PFC boost converter
is the most suitable topology because of its inherent advantages. These PFC boost converters
exhibit poor dynamic regulation of output voltage owing to low pass filter in the voltage
feedback loop. Research effort has been made to mitigate this problem of AC-DC PFC boost
converters. An extended pulse width modulation switching technique has been investigated
and proposed especially for single-phase and three-phase AC-DC PFC boost converters to
improve the dynamic response of output voltage during transient periods.
DOWNLOAD FULL THESIS
http://www.mediafire.com/?72t2phesuicz7mh

quarta-feira, 28 de agosto de 2013

NEW GENERATION THREE-PHASE RECTIFIER Electrical and Electronic Engineering at the University of Canterbury, Christchurch New Zealand EATON POWER QUALITY


NEW GENERATION THREE-PHASE RECTIFIER
By William Phipps A thesis presented for the degree of Doctor of Philosophy In Electrical and Electronic Engineering at the University of Canterbury, Christchurch New Zealand July 2008 ABSTRACT This thesis describes the development of a new gener ation of three-phase rectifier, used to power telecommunications equipment. The traditional topol ogy for such power converters is a single- phase two-stage design, with a boost converter provid ing power factor correction at the input to the first stage and an isolated dc-dc converter making up the second stage. A two-stage design results in the output power being processed twice and this ca scade effect results in an overall reduction in efficiency. A rectifier solution is sought that meet s with all the requirements of the telecommunications industry, while not displaying th e inherent weaknesses associated with a boost-derived topology, and which can be realised in a single-stage design. A number of common three-phase topologies exist that could be realised as telecommunication power supplies, however, they do not completely satisfy all the industry requi rements. A new three-phase rectifier, which is a single-stage buck-derived topology, is proposed. As a consequence of incorporating a buck- derived topology, the three-phase rectifier does not exhibit any issues resulting from startup inrush currents, or high currents due to an output short circ uit condition, as would result in a boost- derived topology. The new proposed rectifier is modu lar in nature, which has the added benefit of redundancy. As a result of the new three-phase rect ifier having a single-stage topology, it is expected that the overall efficiency would able to re ach close to 95%. This is due to the traditional two-stage designs having efficiencies around the 90% mark, and therefore by removing a stage, out of the power conversion process the overall losses w ould also be halved, resulting in the 5% gain in efficiency. The rectifier system requires only one controller as a result of being a single-stage design, thus also reducing the overall system cost. ESTA TESIS FUE FINANCIADA POR LA EATON POWER QUALITY LTD. The initial motivation in developing a new generation of rectifier topology was to see if it would be possible to have a topology that would yield a significant increase in efficiency over the traditional two-stage designs. It was identified that in order to achieve a cost reduction in the rectifier system, an increase the overall efficiency was needed. This would in turn give Eaton Power Quality Ltd. an advantage in the market place.
DOWNLOAD
http://www.mediafire.com/download/i93yka6s7d3cqxm/NEWRETIFICADORTRIFASICO.pdf

PROCESSAMENTO DA ENERGIA ELÉTRICA PROVENIENTE DE MÓDULOS FOTOVOLTAICOS ROGERS DEMONTI





UNIVERSIDADE FEDERAL DE SANTA CATARINA
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
 PROCESSAMENTO DA ENERGIA ELÉTRICA
PROVENIENTE DE MÓDULOS FOTOVOLTAICOS
Tese submetida à
Universidade Federal de Santa Catarina
como parte dos requisitos para a
obtenção do grau de Doutor em Engenharia Elétrica.
ROGERS DEMONTI
Florianópolis, Fevereiro de 2003
PROVENIENTE DE MÓDULOS FOTOVOLTAICOS
Rogers Demonti
Fevereiro/2003
Orientador: Denizar Cruz Martins.
Área de Concentração: Eletrônica de Potência e Acionamento Elétrico
Palavras-chave: Energia Solar Fotovoltaica, Eletrônica de Potência, Conversores Estáticos
de Energia.
Número de Páginas: 150.
RESUMO: O presente trabalho se propõe a desenvolver e analisar formas de
tratamento da energia elétrica produzida por módulos fotovoltaicos. Ele enfatiza a
aplicação de conversores estáticos de energia para a obtenção de soluções simples e
eficientes para este tratamento. A energia solar possui um comportamento muito variável e
seu aproveitamento na forma de energia elétrica depende, de forma incontestável, da
Eletrônica de Potência, ciência que possui um conjunto de conhecimentos adequados para
torná-la útil e competitiva. Iniciando com uma revisão bibliográfica, são conhecidas as
principais características dos sistemas fotovoltaicos, além das formas de abordagem
adotadas, os principais avanços tecnológicos já consolidados visando a concepção de
sistemas eletrônicos econômicos, robustos e eficientes. Dentre inúmeros sistemas
estudados observa-se problemas ainda não resolvidos tais como a eficiência de conversão
de energia, a complexidade da topologia de potência, controle mais adequado, vida útil,
qualidade da energia produzida e custo final do conversor. Considerando-se as principais
deficiências das estruturas mais usuais, são propostas soluções baseadas em estudos
teóricos e resultados experimentais de sistemas de elevado rendimento, objetivando a
simplicidade topológica e de controle. É realizado também um estudo sobre os sistemas de
busca do ponto de máxima potência de operação dos módulos fotovoltaicos,
desenvolvendo-se controladores para este fim.

Abstract of Thesis presented to UFSC as a partial fulfillment of the
requirements for the degree of Doctor in Electrical Engineering.
PHOTOVOLTAIC PANELS ELECTRIC ENERGY
MANAGEMENT

 LINK DOWNLOAD
http://www.mediafire.com/?cd39x665mefdrw7

terça-feira, 27 de agosto de 2013

High Power Density Power Electronic Converters for Large Wind Turbines by Osman Selcuk Senturk


Dissertation submitted to Faculty of Engineering, Science, and Medicine at Aalborg University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering Aalborg University Department of Energy Technology Aalborg, Denmark November 2011 Abstract In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids. For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation.
DOWNLOAD
http://www.mediafire.com/view/9qw3c90brk5lo4m/osman_selcuk_senturk.pdf

terça-feira, 13 de agosto de 2013

DEVELOPMENT OF INDUSTRIAL DIGITAL INVERTER AND ITS APPLICATIONS Ba Da Park Dept, of Interdisciplinary Program of Mechatronics Eng., College of Eng. Pukyong National University

In this thesis, the development results of digital inverter (DI) and its applications are introduced. A simple PI controller is proposed to make the output current track the constant setting current. Based on microprocessor (PIC16F73),  the  control  system is  designed  and  developed.  The  developed  digital  inverter is  applied to  welding machine and Brown gas generator.
THESIS PART1    http://www.mediafire.com/?uw4l7cwwmlbfw2q
THESIS PART2    http://www.mediafire.com/?qwu8anb8uqtbus4

quinta-feira, 8 de agosto de 2013

ÔNIBUS ELÉTRICOS são recarregados, sem fios, enquanto andam pelas ruas



Imagine um veículo elétrico que pode viajar por distâncias infinitas sem jamas ter que parar em uma estação de recarga. Parece impossível, certo? Porque veículos elétricos usam baterias e, em algum ponto, você precisa parar para recarregá-las. Mas não esta aqui.

Dois novos ônibus elétricos que começaram a rodar nas ruas da cidade de Gumi, Coreia do Sul, tiram energia do asfalto. Os chamados Veículos Elétricos Online (OLEV, na sigla em inglês) recebem energia, sem o auxílio de fios, vinda de cabos elétricos colocados embaixo da superfície das ruas usando a tecnologia Shaped Magnetic Field in Resonance (SMFIR). Os ônibus levam uma bateria que tem um terço do tamanho das tradicionalmente usadas por carros elétricos e a recarrega coletando o equivalente a 100 kW de eletricidade desses campos magnéticos criados pelos cabos elétricos — eles trafegam a cerca de 17cm da superfície das ruas.

Pesquisadores têm grandes expectativas para a tecnologia, originalmente desenvolvida pelo Instituto de Ciência e Tecnologia Avançada da Coreia (KAIST).

domingo, 4 de agosto de 2013

A High Performance DSP Voltage Controller with PWM Synchronization for Parallel Operation of UPS Systems

A High Performance DSP Voltage Controller with PWM Synchronization for Parallel
Operation of UPS Systems

Kyung-Hwan Kim
Hanyang University
Department of Electrical Engineering
17 Haengdang-dong, Seongdong-Gu, Seoul KOREA


Inverter system, which uses LC component as the output filter, is essential for a UPS (Uninterruptible Power supply), UPQC (Universal Custom Power Conditioner) and PCS (Power Conditioning System) for the photovoltaic power system. This paper presents DSP (Digital Signal Processor) controlled voltage controller for a 3-phase UPS inverter, which is able to compensate the voltage distortions due to unbalanced and nonlinear loads. The paper discussed the problem of conventional control schemes for the compensation of voltage distortion when they are applied to UPS inverter, and proposes advanced synchronous reference frame control scheme which is able to overcome the problem. In order to solve the problem of low damping ratio of LC filter, the inverter current feed-forward compensator including the selection of the feed-forward gain is proposed. And the digital filter for a compensation of the voltage distortion due to unbalanced and nonlinear loads is also proposed, which makes PI controllers in the synchronous reference frame are able to operate with DC values even under nonlinear and unbalanced load, likewise ensures PI controllers are able to provide zero steady state error. In order to improve the practical usability of the proposed scheme in the paper, the realization of the PLL and the parallel operation, which are essential for UPS, using the proposed controller is also presented. Especially, this paper shows that the feed-forward compensation of the inverter current and the PWM synchronization method proposed in the paper ensures a high precise load-sharing performance in parallel operation of inverter system.

A New Equivalent Circuit Model of IGBT Current Sensors Chun-Chieh Tseng* Chia-Hsiung Kao**

A New Equivalent Circuit Model of IGBT Current Sensors
Chun-Chieh Tseng* Chia-Hsiung Kao**
ABSTRACT
A new equivalent circuit model for IGBT is presented. It takes into account both
electron and hole conduction in sensors and is incorporated with SPICE3 for the
simulation of three types of current sensors, namely active, bipolar, and MOS sensors.
It adopts a multi-MOS model to include the doping variation in the MOS body. The
results agree well with the current sensing measurements within an average error of
4.4%.


LINK FULL PAPER HERE :