“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

OBRIGADO DEUS PELA VIDA,PROTEGENOS E GUARDANOS DE TODO MAL


AUTOR DO BLOG ENG. ARMANDO CAVERO MIRANDA SAO PAULO BRASIL

terça-feira, 28 de fevereiro de 2017

Electronic Engineering (Constant Voltage Circuit) - Provided by Kim, Gyun Nam (Korea Institute of Science & Technology)


Electronic Engineering (Constant Voltage Circuit) - Provided by Kim, Gyun Nam (Korea Institute of Science & Technology)- 전자공학(정전압회로) - 김기남공학원 제공(방송기술직, 공기업 공채전문 학원)


segunda-feira, 27 de fevereiro de 2017

Analysis and Design of High Frequency Gapped Transformers and Planar Transformers in LLC Resonant Converters by Jun Zhang B.E. and M.S., Zhejiang University, China -School of Electrical and Electronic Engineering College of Engineering and Informatics National University of Ireland, Galway



Analysis and Design of High Frequency Gapped Transformers and Planar Transformers in LLC Resonant Converters by Jun Zhang B.E. and M.S., Zhejiang University, China
in fulfilment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Electronic Engineering.

Abstract
The LLC resonant converter is particularly applicable for power supplies applications since soft switching is easily achieved. The dual objectives in power supply are higher switching frequencies and higher power densities. The analysis and design of the LLC resonant converter, especially the magnetic components needs further investigation and the related research has enormous practical significance. In this thesis, the design methodology for the LLC resonant converter is proposed based on the circuit analysis and the loss calculations with soft switching conditions and input voltage variations considered. The gapped transformer employed in the resonant converter is deeply investigated. The transformer was treated as the multiwinding inductor and a new design methodology is proposed. The parasitic parameters in the transformer involving high frequency leakage inductance and stray capacitance are studied, and reliable evaluation formulas are presented. With the purpose of introducing the planar transformer in the LLC resonant converter, the detailed modelling of planar transformer including the winding loss calculation, the stray capacitance and the leakage inductance for the integrated planar structure incorporating the low permeability magnetic shunt is carried out. Combing the analytical results of the gapped transformer design method and modelling of the planar transformer, the gapped planar transformer for the LLC resonant converter is designed and fabricated. Comparison with the conventional transformer shows that successful operation is possible with the low profile core.

LINK COMPLETE THESIS
https://aran.library.nuigalway.ie/bitstream/handle/10379/5048/Thesis_Jun.pdf?sequence=1&isAllowed=y

Characterization of high voltage insulation planar transformer and flyback design tool - Jiang YU and Teddy BONNIN - Département Electronique et Energie Spécialité Electronique et systèmes de l’énergie électrique -





Our work is generally composed by two parts: One is experiment and industrializing a high voltage insulation planar transformer the other is designing a flyback database tool. The products range Mors Smitt The MSAVDC (MS stands for representation of the DC current consumed by the railway rolling stock equipment on the catenary lines of supply (750VDC, 1500VDC and 3000VDC). Placed on the roof of the train, this system can be in direct contact with high voltage and ground. Therefore, it must be able to protect the external battery packs in order to ensure the safety of goods and persons on board. Moreover, it must meet the constraints of temperature and humidity which have a direct impact on the behavior of electronics inside the device. According to the principle of shunt measurement, a voltage measurement of the current crossing a portion located in the power bus bar of the train is taking by two resistors. The connections for the measurement are also used to measure the temperature of the copper bus bar in order to correct the temperature drift. The system also includes an auto calibration system. Then, it is possible to calibrate the measurements by integrating the dimension variations of the section of the bus bar. This analog information is converted in digital data form, and then transmitted thanks to an insulated bus between HV1 and LV2 printed circuits boards. It is an asynchronous serial communication type, ensuring a transfer of data bits one at a time, through a single transmission line (TX). The baud rate is set at 500kbits/s (cf. Appendix N°1).

LINK COMPLETE PAPER
http://www.applis.univ-tours.fr/scd/EPU_DMS/2012PFE_Bonnin_YU_DEE.pdf

terça-feira, 21 de fevereiro de 2017

DC-DC Converter The Flyback DC-DC Converter: The Best Bet for Most SMPS By Dr.-Ing. Artur Seibt, Vienna - BODO´S POWER SYSTEM





LINK ORIGINAL PAPER  PART-1-PAGES 62-69
Electronics in Motion and Conversion October 2016 - Bodo's Power


LINK ORIGINAL PAPER PART-2-PAGES 70-83
Electronics in Motion and Conversion November 2016 - Bodo's Power
http://www.bodospower.com/restricted/downloads/bp_2016_11.pdf


Dr. Arthur Seibt Lagergasse 2/6; A 1030 Wien, Austria Tel. +43-1-505.8186 email: dr.seibt@aon.at http://members.aon.at/aseibt 

 Professional electronics design lab
 Consultant
 Professional translations German - English, English - German, French - German
 Electronics books, magazine articles
 Training courses, continuing education for professional engineers
 Repair and restoration of valuable measuring and audio instruments incl. tape recorders
 AREAS 
Specializing in SMPS with 40 yrs. experience incl. SiC, GaN, D amplifiers. Inventor of current-mode control (US Patent). Expert in emi design 
 Electronic measuring instruments 
Amplifiers DC to HF, specializing in professional audio amplifiers 

 References 

German degrees Dipl.-Ing. and Dr.-Ing. in electronics engineering from TH Aachen (Institute of Technology). 25 yrs. managing director resp. head of R.&.D in Germany, USA, Netherlands, Austria. Since 1989 free-lancing. Excellently equipped design lab. Customers mostly German firms.

segunda-feira, 20 de fevereiro de 2017

Engineers Week 2017 Message from International Space Station


Publicado em 19 de fev de 2017 Greetings from the International Space Station as they celebrate Engineers Week 2017 with us!

sábado, 18 de fevereiro de 2017

Online Workshop on "LTSpice and Control Loops" -Speaker: Ron Lenk - Date: Thursday, March 16, 2017 Time: 8AM - 2PM PST ​ Location: Online



Date: Thursday, March 16, 2017 Time: 8AM - 2PM PST ​ Location: Online 

 Agenda:​ ​​​ Control loop design for power supplies can be challenging, even for those with a background in analog electronics. Translating from textbook theory to actual designs that can be implemented on a circuit board requires experience that can take years to acquire. ​ In this class we will speed up the process by focusing on practical aspects of simulating and designing control loops for power supplies. In particular, we will be using LTSpice, a free simulator, to compute the necessary feedback system and then verify its design. ​ We start from the basics, explaining practically how to measure the transfer function of the power stage of a power supply. ​ We also spend time showing the basics of LTSpice, and then use it to model the power stage. We look carefully at the potential pitfalls of using modeling. ​ We show how to build both switching models and state-space average models of a power supply in LTSpice. We show how to use the latter to measure the transfer function, and also how to practically do the same thing on the lab bench. ​ We then look at the three main types of feedback control, and build models of these. ​ We combine the two models together and show how to measure the complete transfer function of the power supply, hot to verify its bandwidth and phase margin, and how to do that on the lab bench. ​ Finally, we build a complete switching model of the power supply, and verify its stable performance. ​
​ Who should attend: Power management professionals who want to demystify the control topology to advance their career in their respective areas Marketing and sales people who want to learn the control topology to have a better understanding of the DC-DC converters MS/PhD students who want to learn industry oriented power management knowledge

REGISTER
https://www.learnersplace.com/copy-of-led-system-design-2016-1

sexta-feira, 17 de fevereiro de 2017

La Universidad de Jaén avanza en el estudio y desarrollo de mejoras para sistemas de alta concentración fotovoltaica


 El grupo de Investigación y Desarrollo en Energía Solar y Automática (IDEA) de la Universidad de Jaén trabaja, desde finales de 2013, en el desarrollo de sistemas de muy alta concentración fotovoltaica (HCPV, por sus siglas en inglés) que permiten concentrar la luz solar que reciben las células fotovoltaicas un gran número de veces a través del uso de dispositivos ópticos, con lo que reducen el coste de la energía generada sustituyendo el material semiconductor por lentes más baratas y de tecnología más accesible. Este trabajo forma parte del proyecto concedido al grupo IDEA en el marco del Plan Estatal de Investigación Científica y Técnica de la Innovación 2013-2016 financiado por el Ministerio de Economía y Competitividad (MINECO).

Uno de los resultados más importantes de este proyecto es la publicación del libro “High Concentrator Photovoltaics”, editado por la prestigiosa editorial Springer. Se trata de la primera obra que se centra en la tecnología fotovoltaica de alta concentración, en sus fundamentos, ingeniería y aplicaciones, por lo que se convierte en una referencia a nivel mundial. En este volumen, coordinado por los investigadores de la UJA, Pedro Pérez Higueras y Eduardo F. Fernández, han participado 43 investigadores de este ámbito, miembros de 8 instituciones extranjeras y 5 nacionales.

Portada del libro publicado.

“La HCPV es una tecnología joven pero ya ha demostrado su gran potencial de crecimiento en los últimos años. Sin embargo, todavía no se ha conseguido que los sistemas HCPV puedan competir en precio con la tecnología fotovoltaica convencional”, explica Pedro Pérez Higueras, profesor del Departamento de Ingeniería de la UJA y uno de los responsables de la investigación. En ese sentido, se sitúan los dos principales objetivos del proyecto: por un lado, desarrollar módulos compactos y ligeros con factores de concentración superiores a 2.000 soles (número de veces que se concentra la luz del Sol) y, por otro, desarrollar un sistema de control inteligente basado en sensores que permitan maximizar la potencia generada en los sistemas HCPV.

Hasta el momento, los resultados obtenidos indican un destacado salto en el nivel de concentración. En 2013, los equipos comerciales trabajaban en 500 veces y células de tamaño de 1x1cm. Sin embargo, en la actualidad, ya se están logrando aumentar ese nivel de concentración a 1.000 veces reduciendo el tamaño de las células a 0,5x0,5 cm. “Buscamos que este tipo de tecnología HCPV sea más competitiva, económica y eficiente que la fotovoltaica convencional en una aplicación muy concreta, en lugares con altas temperaturas y mayor exposición a la radiación, como ocurre en zonas del sur de España o del norte de África. De esta forma, se mejora la eficiencia energética un 40%, en torno al doble de la que se consigue actualmente con la tecnología fotovoltaica convencional”, indica Pedro Pérez Higueras.

Este proyecto tendrá continuidad gracias a la concesión al grupo IDEA de un Proyecto de I+D+i del Ministerio de Economía y Competitividad que liderarán como investigadores principales Eduardo F. Fernández y Florencia Almonacid. En él, se pretende resolver los resolver los retos que el desarrollo de la HCPV plantea mediante nuevas arquitecturas de células solares, configuraciones ópticas y mecanismos de refrigeración con el fin de optimizar la conversión eléctrica de la energía procedente del Sol para promover la transición hacia un sistema energético más sostenible.

“En la actualidad, la concentración fotovoltaica es un campo con muchas posibilidades, en el que queda un largo camino por recorrer, para conseguir que esta tecnología sea realmente competitiva para producir electricidad de forma masiva. Para ello, habrá que dedicar grandes esfuerzos en investigación que nos permitan analizar la degradación de los materiales utilizados, incrementar la eficiencia de las células solares y, en definitiva, mejorar su fiabilidad a medio y largo plazo. Es una de las grandes líneas de investigación que estamos desarrollando en la UJA, junto con la optimización del autoconsumo fotovoltaico que persigue conseguir “Edificios carbón cero”, en los que se genera la misma cantidad de energía que se consume. Por último, estamos trabajando también en la realización de proyectos de cooperación como el que está llevando a cabo el profesor Juan de la Casa en colaboración con diferentes universidades peruanas”, señala Jorge Aguilera, catedrático y responsable del grupo IDEA de la UJA.

LINK ORIGINAL DE LA NOTICIA
http://diariodigital.ujaen.es/node/49276

High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants editado por Pedro Pérez-Higueras,Eduardo F. Fernández


LINK
https://books.google.com.br/books?id=b8FOCgAAQBAJ&lpg=PA36&ots=-KhGsYkx2y&dq=High%20Concentrator%20Photovoltaics%20Pedro%20P%C3%A9rez%20Higueras&hl=pt-BR&pg=PA48#v=onepage&q&f=false

GOOGLE DEMO BOOK

quinta-feira, 16 de fevereiro de 2017

Grid Connected Photovoltaic Systems with SmartGrid functionality Henry Benedict Massawe - Norwegian University of Science and Technology -Department of Electric Power Engineering


Abstract This thesis work is part of the NTNU renewable energy laboratory project, “Grid Connected PV Systems with Smart grid functionality”. It solves the problem of shading to the available NTNU PV modules which is sensitive to the exiting central inverter system topology by proposing a PV system which is more efficient and reliable. This thesis is focused on the design of the PV-grid connected inverter power stage that supports the proposed PV system under study. As part of the NTNU renewable energy laboratory project, a single phase 1kW, 230V, dual power stage inverter is designed. The important parameters required for inverter stage including input inductance and capacitance, DC –Link capacitance and LCL filter were designed. In chapters 1 to 2, the PV system overview and grid connected inverter technology is discussed. Photovoltaic characteristics that help the development of a proposed PV system are pointed out. The real scenario of the available NTNU PV system and the challenges facing its poor efficient to generate electricity is explained in Chapter 2. Chapters 3 to 4, present different topologies that are possible in the design of the power stage inverter of which full bridge converter topology is chosen due to its numerous advantages. The significance of dual stage and galvanic isolation to PV-grid inverters is depicted in chapter 3. The energy conversion efficiency, maximum power point tracking, anti-islanding, power quality and cost have been mentioned in Chapter 4 as the most important criteria to be considered when designing any power stage inverter. In chapter 5 the parameters for power stage inverters are estimated and proposed. The boost inductor and input capacitor which are important components to voltage source inverter (VSI) are calculated. Switching scheme and the L-C-L filter is proposed to give a clear sinusoidal output phase voltage of 230V from a DC capacitance bus estimated to handle 400V. The parameters are designed in Multism / NI LabView and the desired output simulation results are discussed in Chapter 6. Lastly, the conclusion of this thesis is made and proposes the scope of the future work. This is the next part of the NTNU renewable energy laboratory project. The proposed control schemes would compromise with the inverter power stage and would results in the smart grid system. The proposed control shall be able to integrate the available renewable energy sources available in the laboratory and shall be implemented in NI LabView.

 LINK ORIGINAL
https://brage.bibsys.no/xmlui/bitstream/handle/11250/257663/653777_FULLTEXT01.pdf?sequence=2&isAllowed=y

terça-feira, 14 de fevereiro de 2017

How does Google Mobile App work with Inverter/Home UPS via Bluetooth in India? Su-Kam Falcon Plus



How does Google Mobile App work with Inverter/Home UPS via Bluetooth in India? Su-Kam Falcon Plus This mobile app can monitor and control an inverter at your home using Bluetooth technology. A revolutionary product introduced by Su-Kam.

Watch Discovery Channel’s Documentary on How Su-Kam is Solarizing India

Watch Discovery Channel’s Documentary on How Su-Kam is Solarizing India Watch the best ever documentary made on how solar is bringing development in rural India. The movie has been shot by Discovery Channel in Uttar Pradesh, Tripura, Delhi and Punjab Su-Kam Awarded ‘Best Solar Rural Electrification Company’
Su-Kam’s solar power systems are lighting up lacs of houses in remote villages of India and Africa. Indian rooftop Solar Summit, organized by Solar Quarter, lauded our efforts and presented us this prestigious award.

LINK
http://sukam-solar.com/

terça-feira, 7 de fevereiro de 2017

Control Method of 3-Phase AC/DC PWM Converter for DC distribution using SECOND ORDER GENERALIZED INTEGRATOR (SOGI)- FREQUENCY LOCKED LOOP ( FLL )-SHIN KI WRONG






Control Method of 3-Phase AC/DC PWM Converter for DC distribution using SECOND ORDER GENERALIZED INTEGRATOR (SOGI)- FREQUENCY LOCKED LOOP ( FLL )-SHIN KI WRONG

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
SUNGKYUNKWAN UNIVERSITY

segunda-feira, 6 de fevereiro de 2017

Zero dead-time PWM method for reducing THD in offshore wind power 3-level inverter - KAN YONG -PROGRAM ENERGY SYSTEM ENGINEERING - SUNGKYUNKWAN UNIVERSITY



AAAA



ABSTRACT
 To prevent the short circuit dead time is required because it can happen the short circuit due to a difference between rising time and falling time ocurred in power semiconductor swith. However dead time cause the distortion and THD increase of output current,it is major cause of malfunction by distorted output current and high THD.
 In this paper,circuit of 3-level NPC inverter and characteristic of operation is analyzed.Also switching methods wich make the switching pattern of Zero Dead-time PWM for decreasing THD and optimization method is proposed. Proposed Zero Dead -time PWM method is explained on the basis of theoretic analysis,hardware is set for applying the proposed method.
LINK
http://www.mediafire.com/file/5k85lybur3tzl9o/PWM_DEAD_TIME_2017.pdf

sábado, 4 de fevereiro de 2017

Engenharia Elétrica e a Pós-graduação na Universidade Federal do Ceará - PROFESSOR PAULO PRAÇA ( CHEFE DO DEPARTAMENTO DE ENGENHARIA ELÉTRICA DA UNIVERSIDADE FEDERAL DE CEARÁ)-BRASIL


Neste vídeo, o Professor Paulo Praça expõe o que é a pós-graduação em Engenharia Elétrica, em particular, o programa da Universidade Federal do Ceará.
 PESSOALMENTE EU TRABALHEI DE 2006 A 2012 NA EMPRESA MICROSOL HOJE APC-SCHNEIDER,A EMPRESA MICROSOL TINHA UMA ESTREITA PARCERIA COM O PROGRAMA DE ENGENHARIA ELÉTRICA DA UNIVERSIDADE FEDERAL DE CEARÁ,ESPECIALMENTE COM O PROGRAMA DE MESTRADO E DOUTORADO,O NÍVEL ACADÊMICO DOS ALUNOS,PROFESSORES E LABORATÓRIOS SÃO EXCELENTES,EXISTE AMBIENTE PARA A PESQUISA E DESENVOLVIMENTO.

quinta-feira, 2 de fevereiro de 2017

Design and Testing of Voltage Source Inverter and Motor Control System for Electric Vehicle - Lars Helge Oplopisal - Norwegian University of Science and Technology - Department of Electric Power Engineering


Design and Testing of Voltage Source
Inverter and Motor Control System for
Electric Vehicle
Lars Helge Opsahl
Master of Energy and Environmental Engineering
Supervisor: Lars Einar Norum, ELKRAFT
JULY 2015
Submission date: July 2015
Norwegian University of Science and Technology
Department of Electric Power Engineering

Abstract

With fast rotating permanent-magnet motors and compact battery storage units, the high performance motorsport community has, in recent years, started to utilize the quick response and high torque of electrical drivetrain solutions. By recovering energy, braking into a corner, for then to utilize the same energy, boosting out again, the electrical machine gives increased performance even for the fastest racing cars. The purpose of the work presented in this Master’s thesis is to develop and produce the power electronics and motor control system needed to control such an electric machine, where the final product is used to drive a fully electric prototype racing car. The thesis presents the conceptual work, design choices, prototyping, testing and development of a 2-level voltage source inverter and motor control system. The voltage source is a battery accumulator energy storage unit, while the machine is a three-phase permanent-magnet motor. The voltage source inverter is based on insulated-gate bipolar transistors (IGBTs), controlled by a motor control system called field oriented control. On command from the driver’s throttle, the motor control system generates the required stator currents, giving the wanted output torque, supplied from the voltage source of the battery accumulator. The inverter is the connecting interface between the power source, and the rotating machinery. With the amount of energy and power needed to drive a racing car, safe and reliable operation is important. To ensure the safety of the driver and operating personnel, the system and its safety features have been through extensive testing in a laboratory setup and on the race tracks. In the system development process, simulation and modelling tools have been applied to investigate different solutions and technologies. These tools have also been used to design the electric circuits, program code and mechanical design needed for the system. The final product is installed in a racing car and shows great performance.
LINK ORIGINAL COMPLETE THESIS
https://brage.bibsys.no/xmlui/handle/11250/2368215
DIRECT LINK
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2368215/13287_FULLTEXT.pdf?sequence=1&isAllowed=y

Design of a 48 V three-phase inverter For automotive applications -FREDRIK FÜRST - Department of Energy and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2015


Design of a 48 V three-phase inverter: For automotive applications
Master's thesis in Electric Power Engineering

Fredrik Furst
Department of Energy and Environment
Chalmers University of Technology
Abstract
This project presents a design and construction of a three-phase inverter,
drive circuit and dc-link capacitor bank. The inverter should be able to
supply an electrical machine with 48 V and 250 A. Initial calculations and
simulations were made to get some base for the ordering of hardware. The
inverter board consists of six MOSFETs in parallel for each phase and the
PCB itself is made of aluminum to enable a thermal substrate technique.
The inverter PCBs are mounted on an aluminum frame where liquid runs
between them to cool the inverter. The drive circuit is controlled with a
dSPACE system and the tests are made with a load consisting of cables
and iron powder cores. Temperatures are measured with PT100 sensors
for the water and an infrared camera for the surfaces.
Two di erent MOSFETs were investigated, one with higher switching
losses and one with higher conduction losses. The two inverters were tested
on an RL load and the cooling system picked up around 270 W at a phase
current of 150 Arms. Theoretical calculations, performed with measured
parameters, represents the temperature measurements well. The thermal
resistance between the case and the sink in the inverter, R cs, is measured
to around 0:15 [K=W].
Index Terms: Capacitor bank, cooling system, drive circuit, dSPACE,
inverter, MOSFET, thermal evaluation.

LINK ORIGINAL COMPLETE THESIS
http://publications.lib.chalmers.se/records/fulltext/224623/224623.pdf