AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

Mostrando postagens com marcador SVPWM. Mostrar todas as postagens
Mostrando postagens com marcador SVPWM. Mostrar todas as postagens

quinta-feira, 26 de fevereiro de 2015

Model Predictive Control of Power Electronics Converter - Jiaying Wang - Master of Science in Electric Power Engineering Norwegian University of Science and Technology

Abstract
 Voltage-source PWM (Pulse Width Modulation) rectifier can provide constant DC bus voltage and suppress harmonic distortion of grid-side currents. It also has power feedback capability and has a broad prospect in the field of DC power supply [1], reactive power compensation, active filtering and motor control system. This dissertation studies the theory and implementation of PWM rectifier and completes the following tasks: 1. Analyze three-phase voltage-source PWM rectifier (VSR), including its topology, mathematical model and principle. Derive Clarke transformation and Park transformation and analyze the mathematical model in the two-phase αβ stationary coordinate and dq rotating coordinate. 2. Make a detailed analysis on the principle and characteristics of Direct Power Control (DPC) strategy and Model Predictive Control (MPC) strategy and study the instantaneous active power and reactive power flow in the rectifier. 3. Based on the principle of traditional switching table of DPC, an improved table is proposed. Then this project presents a further improved switching table to achieve better control performance and the simulation model in Matlab/Simulink environment is established to verify the algorithm of voltage-oriented direct power control strategy. 4. Based on different strategy studies and the simulation results from DPC system, propose our model predictive control (MPC) algorithm. 5. Analyze the modulation principle of the space vector pulse width modulation (SVPWM). 6. Build the MPC-SVPWM model in Matlab/Simulink to verify our MPC algorithm. 7. The simulation result shows that MPC-SVPWM performs better in harmonic suppression, unity power factor, DC output voltage ripple coefficient and dynamic response than DPC. Key words: PWM rectifier, unity power factor, direct power control, model predictive control,

LINK
http://www.diva-portal.org/smash/get/diva2:566308/FULLTEXT01.pdf