“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

JORGE CHAVEZ DARTNELL SEPTIEMBRE 1910 "Higher always higher, until we reach the glory"


SAO PAULO BRASIL

terça-feira, 27 de janeiro de 2015

SISTEMA AUTOMÁTICO PARA REGULAÇÃO DE TENSÃO EM REDES DE BAIXA TENSÃO Por: Jean C. da Cunha Orientador: Marcello Mezaroba Dr.-UDESC-UNIVERSIDADE DO ESTADO DE SANTA CATARINA-BRASIL



LINK ORIGINAL
http://www.joinville.udesc.br/portal/professores/mezaroba/materiais/CEN___Aula_4___Compensa__o_Ativa_de_Reativos___Statcom.pdf

FILTRO HARMONICOS PASSIVO - Cassiano Rech – Doutor (UFSM)-UDESC


FILTRO HARMONICOS PASSIVO - Cassiano Rech – Doutor (UFSM)-UDESC
LINK
http://www.joinville.udesc.br/portal/professores/mezaroba/materiais/CEN____Aula_6___Filtros_de_harm_nicas_passivos.pdf

EXERCICIOS RESOLVIDOS EPO-1 ELETRÔNICA DE POTÊNCIA I -PROVA 2 -UDESC- DR. ENG LEANDRO MICHELS SANTA CATARINA BRASIL


EXERCICIOS RESOLVIDOS EPO-1 ELETRÔNICA DE POTÊNCIA I -PROVA 2 -UDESC- DR. ENG LEANDRO MICHELS SANTA CATARINA BRASIL

LINK
https://copy.com/9sY2FB9sCSBQgZwN


EXERCICIOS RESOLVIDOS EPO-1 ELETRÔNICA DE POTÊNCIA I -PROVA 1 -UDESC-DR. ENG LEANDRO MICHELS


EXERCICIOS RESOLVIDOS EPO-1 ELETRÔNICA DE POTÊNCIA I -PROVA 1 -UDESC-DR. ENG LEANDRO MICHELS
LINK ORIGINAL
http://www.joinville.udesc.br/portal/professores/michels/materiais/Exerc_cios_resolvidos___EPO_I___Prova_1.pdf
LINK DIRECTO
https://copy.com/SPAUIjdHr9Oic38j

CURSO ELETRÔNICA DE POTÊNCIA I - PROF. LEANDRO MICHELS DR. ENG. CURSO DE ENGENHARIA ELÉTRICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA UNIVERSIDADE DO ESTADO DE SANTA CATARINA-BRASIL




LINK DO CURSO DE ELETRÔNICA DE POTÊNCIA I
https://copy.com/N903ZBoORVEx1oOS
EXCELENTE CURSO DE ELETRONICA DE POTENCIA I MINISTRADO POR MEU DISTINGUIDO AMIGO E COLEGA DR. ENG. LEANDRO MICHELS DO DEPARTAMENTO DE ENGENHARIA ELETRICA UDESC  SANTA CATARINA BRASIL

domingo, 25 de janeiro de 2015

dq-based individual phase control of three-phase four-wire PWM rectifier for UPS Kim,SeungHo Dept. of Electrical Engineering Graduate School of Industry and Engineering Seoul National University of Science and Technology






ABSTRACT
dq-based individual phase control of three-phase four-wire PWM rectifier for UPS Kim,Seung Ho Dept. of Electrical Engineering Graduate School of Industry and Engineering Seoul National University of Science and Technology ABSTRACT Recently, the power quality sensitive loads such as computer and communications are so increased that the power supply with good power quality has come to the fore. However, it is possible that the public grid is interrupted by unexpected fault. Therefore, the UPS(uninterruptible power supply) has become an alternative solution to solve this problem. Generally, the UPS consist of a rectifier, a battery, and a PWM inverter and recently they use IGBT PWM rectifier to reduce input THDi and improve the input power factor. In this configurations the three-phase four-wire input UPS is widely used to eliminate the transformers in the UPS system. The aims of control algorithm for the IGBT PWM rectifier in three-phase four-wire UPS is a unity power factor. The SVM(space vector modulation) is one of the most popular and preferable PWM scheme because it reduces the commutation losses and harmonics in the output voltage, and has higher modulation index than SPWM(sinusoidal PWM) but they need a 3D SVM to control three-phase four-wire PWM rectifier and have some difficulties like as selection of inductance of input inductor and controls the neutral current. To improve this problem the another control algorithm which controls each phase individually has been suggested but this control algorithm use analog based control so ir's so sensitive and unstable. So another new algorithm which is added d-q control to control algorithm which controls each phase individually is suggested and it can control stably and can reduce neutral current too. This can be seen by computer simulation and experimental result.

sábado, 24 de janeiro de 2015

Power Quality Improvement of Single-Phase Grid-Connected Photovoltaic Inverter - Trung-Kien Vu- Department of Information and Communications Engineering, Graduate School of Chungnam National University




A Dissertation for the Degree of Doctor of Philosophy
Power Quality Improvement of Single-Phase
Grid-Connected Photovoltaic Inverter
Department of Information and Communications Engineering
Graduate School
Chungnam National University
By
Trung-Kien

ABTRACT

The economical and environmental impacts of fossil fuels have forced society to investigate sustainable solutions. The interest has focused on the renewable energy sources since the green and clean benefits. Consequently, investments in research and development in the field of power electronics have increased proportionally, especially in high voltage and high power grid-connected systems. The distributed power generation (DG) systems are becoming more common as the need for electric power increases because of taking advantage of using different energy sources such as wind and solar. A few examples are hybrid cars, solar houses or hospitals in remote areas where providing clean, efficient and reliable electric power is critical to the loads. In such systems, the power is distributed from the source side to the load side via power electronic converters in the system. At low and medium power applications, the task is often left to single-phase inverters where they are the only interface between sources connected to dc bus and loads connected to an ac bus. This dissertation investigates the power quality improvements to properly regulate the power flow between renewable source and the utility network. The control method for single-phase inverters used in low and medium power DG systems is based on (and also takes the advantage of) the well-known d-q transformation (which is mostly employed for three-phase converters’ analysis and control design). The transformation requires at least two independent phases for each state variable in the system; thus a second phase must be created. This virtual-phase can be done by DSP implementation, hence there is no need for additional hardware in the system, making it more attractive and cost effective method. The Proportional-Resonant (PR) controller based current control scheme, compared with conventional Proportional-Integral (PI) controller, not only provides a superior transient response but also provides a zero steady-state error as well as a high disturbance rejection and a low output current THD under grid-tie mode operation. The entire controller can be implemented in a DSP digital control board which is becoming more common in power electronics converters within the past decade. Special attention is given to systems which demand a third-order LCL-filter as interface between inverter and grid. This filter configuration is widely employed in high power systems, in which the switching frequency is typically limited by the switching devices. The LCL-filter has the ability to reduce the level of harmonic distortion with less inductance, compared with the first-order L filter. On the other hand, it introduces undesirable characteristics, such as resonance, that must be compensated by the controller. Another issues related to the switching devices such as IGBT, MOSFET and others have very high switching frequency above tens of kilohertz. A blank-time is needed to avoid the conduction overlap of two switching devices in the same leg. This blank-time causes the phase error, output voltage distortions and fundamental voltage drop, which degrade the control performance and hence, may cause the power loss during generation process. Comparative analysis and design procedures of conventional PI and PR controller for current control technique have been presented. Furthermore, an output low-pass LCL-filter design procedure and a dead-time compensation method for a 3kW single-phase grid-connected full-bridge PV VSI have also been introduced in this study with the final results are implemented in a DSP TMS320F2812 based digital controller board.

quinta-feira, 22 de janeiro de 2015

Output Filter Design of Grid-Connected Inverter for High Power Offshore Wind Power System Kwangwoon graduate Department of Electrical Engineering Kim Dong





Abstract
Output Filter Design of Grid-Connected Inverter for High Power Offshore Wind Power System The output filter design for high power grid-connected inverter of offshore wind-turbine has many limitations such as low switching frequency, allowable DC-voltage, and the component volume and weight. In addition, the injected harmonic current into the grid is constrained by various grid connection requirements. This paper compared and weighed with several harmonic regulations and suggested the optimal design procedure of the output filter compliance with the grid code using spectrum analysis of inverter output voltage that contains harmonics. In this paper, the output filter of grid connected inverter for 7MVA offshore wind power system is designed to meet the BDEW harmonic currents limits and the IEEE 519-1992 requirements. The performance of the designed output filter is validated by extensive simulations using Matlab/Simulink.

quarta-feira, 21 de janeiro de 2015

Design of CLC Filter for Flyback Inverter of Grid-Connected Photovoltaic Systems Yesl Shin Electrical and Computer Engineering Graduate School Ajou University





Abstract
Yesl Shin
Electrical and Computer Engineering Graduate School Ajou University

This paper proposes a design of CLC filter which is the output filter of a flyback type current source inverter (CSI) for a photovoltaic system. This applied inverting system is micro-inverter, so the capacity and size of the entire system is critical factor for system evaluation. The proposed CLC filter consists of a conventional CL filter and an additional capacitor. The CLC filter guarantees the same or better performance about the reduction of current ripple than that of the CL filter. In such a case, the CLC filter is composed of the capacitor and the inductor with smaller capacity than the components of the CL filter. It can help the applied micro-inverter to be smaller size and cost less. For the advanced stability of output CL filters, the effect of passive damping methods for the CL filter is analyzed according to the resistive damping’s location. Among these damping methods, the one which has low power consumption is applied to the CLC filter and the effect of this method is also analyzed. A simulation and experiment are conducted to verify the performance of the proposed CLC filter and the validity of passive damping method.