AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

sábado, 30 de setembro de 2023

전기버스 급속충전기의 PI-IP 혼합 제어기를 이용한 AC/DC 컨버터 DC-Link 전압 제어에 관한 연구 = A Study on AC/DC Converter DC-Link Voltage Control Using PI-IP Hybrid Controller of EV Bus Fast Charger


 





전기버스 급속충전기의 PI-IP 혼합 제어기를 이용한 AC/DC 컨버터 DC-Link 전압 제어에 관한 연구 = A Study on AC/DC Converter DC-Link Voltage Control Using PI-IP Hybrid Controller of EV Bus Fast Charger 

A Study on AC/DC Converter DC-Link Voltage Control Using PI-IP Hybrid Controller of EV Bus Fast Charger BY Gyu-Nam Yang 
Department of Electrical Engineering Graduate School, Chonnam National University
 (Supervised by Professor Sung-Jun Park) 

 (Abstract) 

The supply of electric vehicles (xEVs) in the transport sector is increasing in response to the global demand for reducing carbon dioxide emissions. However, due to the gradual slow dissemination, the emission is rather difficult, increasing every year. The reasons for this include a relatively high price compared to an internal combustion engine vehicle, limiting the driving range on a single charge, and insufficient charging station. In such a situation where the spread is slow, the method of preferentially eco-friendly public transportation, which has a higher usage rate than passenger cars, is being accepted. In particular, EV buses, which account for a large portion of public transportation, are rapidly spreading. Accordingly, there is a growing demand for the introduction of a large-capacity fast charger that can charge a battery of several hundred kW within 30 minutes. In general, the structure of a fast charger consists of an AC/DC converter and a 2-stage of an isolated DC/DC converter. AC/DC converter converts system 3-phase AC power to DC power and improves power factor. The isolated DC/DC converter uses the rectified DC output to control the voltage and current required by the EV bus battery to directly charge the battery. AC/DC converters have several topologies. Among them, the fast charger for charging is a 3-level converter, and the Vienna Rectifier has many advantages. However, the Vienna Rectifier is a unidirectional converter and it is difficult to control during no-load or light-load operation. In particular, there is a disadvantage in that it is unstable during initial operation and when the battery is fully charged. Several methods have been proposed to solve this problem. Burst mode control [1,2], which is a representative method, has a problem in that it adversely affects the performance of the secondary-side converter and the battery being charged due to the large DC-Link voltage ripple. As another method, a control method with a hysteresis loop was reviewed [3], However, the problem of induced high inrush current is not effectively improved.[4] Therefore, in this paper, hardware configuration and voltage control method for stable control of Vienna Rectifier are presented. Vienna Rectifier is a unidirectional converter characteristic, but there is instability of control under light load conditions. Accordingly, we propose a hardware configuration that can reduce losses by using it as a system power source instead of a conventional dummy resistor. In addition, the existing PI controller has a large transient state due to its quick response when a sudden load change occurs, and the recovery of the steady state may be delayed in the Vienna Rectifier. To solve this problem, In order to secure reliability in the entire load section, we propose a voltage control method that determines the setting parameters of the PI-IP hybrid controller using the load current. The proposed method proved the validity of the hardware configuration and control algorithm of Vienna Rectifier presented through PSIM simulations and experiments.

VIEW FULL TEXT:

DOWNLOAD LINK:

domingo, 24 de setembro de 2023

Design and evaluation of automotive power module : 650V GaN E-HEMT with meandered interconnection and integrated motor-inverter power module---GaN E-HEMT 소자용 인터커넥션과 자동차용 모터-인버터 통합구조 파워모듈의 설계 및 평가

Design and evaluation of automotive power module : 650V GaN E-HEMT with meandered interconnection and integrated motor-inverter power module By Jihwan Seong

 A thesis submitted to the graduate school of Hanyang University for the degree of Doctor of philosophy Department School of Hanyang university 

ABSTRACT 
 With increasing demand in automotive fuel efficiency and ever-strengthening global carbon dioxide emission regulations, electrification has become an indispensable trend. Especially in the automobile industry, miniaturization and performance are other major challenges, and they should be considered with electrification as goals in the equipment design stage. Because of the challenges, a tailored design and evaluation process is necessary for power modules that perform high-level power conversion for motor driving. This dissertation attempts to present the design and evaluation of power modules used in electrified vehicles. The dissertation starts with the configuration of a power module and a description of each module component. A power module includes power devices and packaging components. Among the power devices, wide bandgap (WBG) devices have recently been widely used in power modules, and their characteristics are described. In addition, the roles of packaging components and their design considerations are presented. Because the power module treats electric power, electrical verification is important. Electrical verification methods based on the finite element method (FEM) and circuit simulation tools are introduced. The aforementioned design and evaluation methods are applied to the proposed models of two applications. First, a new interconnection design is proposed. The interconnection is specially designed for the GaN E-mode High-electron-mobility Transistor (E-HEMT). The design process for the proposed interconnection is presented in detail, and a parametric study is conducted considering major design variables, to achieve minimum parasitic inductance and thermal resistance objectives. The expected advantages of the optimal interconnection design, as obtained from the parametric study, are described. To verify these expected advantages, various simulations and experiments are conducted. A prototype of the proposed interconnection is fabricated and experimentally evaluated. Secondly, the inverter power module is designed and analyzed to be applied in the motor-inverter integrated structure of the electric compressor and starter-generator components used in 48-V mild hybrid vehicle system. An improved power module design is proposed, and it demonstrates all of the electrical and thermal performances required in the integrated structure. The performances are evaluated by conducting electrical/thermal simulations and experiments. As a result, the superiority of the proposed interconnection for GaN E-HEMTs and the improved power module considering the integrated structure was demonstrated, and their evaluation processes were validated based on the similarity between the simulation and experimental results.

LINK: 

sexta-feira, 15 de setembro de 2023

Magnetic design of a 3-phase SiC-based PV inverter with DC-link referenced output filter ALEJANDRO RUJAS1,2, ITSASNE LANDABURU1, VICTOR M. LOPEZ-MARTIN1 AND OSCAR BARAMBONES2,


 Magnetic design of a 3-phase SiC-based PV inverter with DC-link referenced output filter BY
 ALEJANDRO RUJAS1,2, ITSASNE LANDABURU1, VICTOR M. LOPEZ-MARTIN1 AND OSCAR BARAMBONES2, 1IKERLAN 
Technology Research Centre, Basque Research and Technology Alliance (BRTA), Arrasate-Mondragon, Basque Country, Spain (e-mail: arujas@ikerlan.es) 2

Departament of Automatic Control and System Engineering, Engineering School, University of the Basque Country UPV/EHU, Vitoria, Basque Country, Spain 

 This work was supported in part by the European Union’s Horizon 2020 research and innovation programme funding, under the grant agreement number 783158 

ABSTRACT 
The use of Silicon carbide (SiC) devices represents an improvement in terms of size, weight and efficiency of power converters. However, SiC-based solutions present high dv/dt and di/dt on the switching events, increasing the common-mode noise injected into the grid. To reduce the common-mode noise, three-phase inverters with a DC-link referenced output filter are widely considered in photovoltaic (PV) inverters connected to the grid. However, if the filter is DC-link referenced the inductor ripple is larger, and this must be considered for the AC inductor filter design. This work shows, on a PV inverter, the impact of that DC-link referenced filter on the current ripple of the inductor, and the improvement achieved with the use of SiC devices, increasing the switching frequency. A comparison in terms of weight, size, losses and materials costs is presented for different core materials and configurations.

segunda-feira, 11 de setembro de 2023

Magnetic Design and Experimental Evaluation of a Commercially Available Single Integrated Transformer in Three-phase LLC Resonant Converter-Mostafa Noah, Student Member, IEEE, Shota Kimura, Jun Imaoka, Member, IEEE, Wilmar Martinez, Member, IEEE, Shun Endo, Masayoshi Yamamoto, Member, IEEE and Kazuhiro Umetani Member, IEEE,


 
Magnetic Design and Experimental Evaluation of a Commercially Available Single Integrated Transformer in Three-phase LLC Resonant Converter-Mostafa Noah, Student Member, IEEE, Shota Kimura, Jun Imaoka, Member, IEEE, Wilmar Martinez, Member, IEEE, Shun Endo, Masayoshi Yamamoto, Member, IEEE and Kazuhiro Umetani Member, IEEE

M. Noah, J. Imaoka and M. Yamamoto are with the Power Electronics Lab of Nagoya University, Furo-cho, Chikusa-ku, Japan. (email: mostafa.noah@ieee.org; imaoka@nuee.nagoya-u.ac.jp; m.yamamoto@imass.nagoya-u.ac.jp) S. Kimura and S. Endo are with the Department of Mechanical, Electrical and Electronic engineering, Shimane University, 1060 Nishikawatsu, Matsue, Japan. 

 Abstract—Multi-phase topologies are preferably employed in power conversion systems to lessen the per phase circuit current, conduction losses, devices thermal stresses, and to reduce the output current ripples. Multi-phase LLC resonant dc/dc converter usually possess a number of magnetic cores equal to the number of phases. These magnetic cores are the major contributors to supply volume, weight, and size. For these reasons, circuit designers tend to select the topologies that have a minimal number of magnetic cores. In this paper, the authors aim to promote the industrial applications of the three-phase LLC resonant converter by integrating three transformers into a single, commercially available, magnetic core to reduce the volume, weight, and cost of the power converter. A comprehensive magnetic analysis for the three-phase integrated transformer is conducted. FEM Simulation and experimental tests are carried out to validate the proper operation of the integrated transformer utilized in a 390/12V-500W prototype. Furthermore, the power losses distribution has been presented. The proposed integrated transformer has been proven efficient, and it realized a uniform thermal distribution along the core compared to the three discrete transformers.

quarta-feira, 6 de setembro de 2023

Electric vehicle charging station circuit architecture-Arquitetura do Circuito da estação de carregamento de veiculos elétricos-電動汽車充電站電路架構


 

Modular Multiport Power Converter Topologies for Electric Vehicle Charging Stations-by Dao,Ngoc Dat-Presented as Ph.D. Thesis Graduate School of Yeungnam University August 2021 Department of Electrical Engineering Major in Control and Electric Machinery  Power Conversion






 


Modular Multiport Power Converter Topologies for Electric Vehicle Charging Stations Advisor: Professor Dong-Choon Lee Presented as Ph.D. Thesis Graduate School of Yeungnam University by Ngoc Dat Dao August 2021 Department of Electrical Engineering Major in Control and Electric Machinery  Power Conversion 

ABSTRACT

 The main objective of this thesis is to develop converter topologies with high efficiency and low cost for fast charging stations. Based on the investigation of different power conversion structures for fast charging stations, new topologies have been derived, which can offer additional benefits to EV fast charging stations. Firstly, a novel isolated three-port DC/DC converter is proposed, which is based on a series resonant converter (SRC) and a dual active bridge (DAB) converter for electric-vehicle (EV) charging stations with fast and slow charging functions. With this three-port structure, the proposed converter has fewer components, which results in lower system cost and volume compared with separate charger systems. A simple control method using phase shift and frequency modulations was developed to control the output power of the fast and slow charging ports simultaneously. An optimal phase shift angle was also derived to minimize the transformer current for when only the DAB converter is operated for slow charging. To verify the converter operation, a 5-kW SiC-based prototype with a power density of 2.74-kW/dm3 was built and tested with an input voltage of 600-V. A high efficiency performance over a wide output voltage range has been achieved, and the peak efficiency is 98.2% at the rated conditions. Secondly, a half-bridge bidirectional isolated matrix-based AC/DC converter is proposed for compact AC/DC power stages in fast charging stations. The converter can control not only the DC voltage or current, but also the power factor of the AC current with a single conversion stage, which helps to achieve a higher power density with a lower complexity. The converter operates with zero-voltage switching (ZVS) or zero-current switching (ZCS) in all switches. Hence, the switching frequency of the converter can be increased higher, leading to smaller passive components. Besides the simple circuit, the modulation scheme derived from time domain analyses is also easy to implement. The proposed topology has been verified by experimental results for a 2-kW SiC-based prototype. A high efficiency of 96.8 % was achieved at a full load condition. The current THD is lower than 4 % and the power density is 1.8-kW/dm3. Furthermore, an experiment for two modules has been carried out to demonstrate the feasible of the proposed converter for modular SST-based charging stations. Finally, a novel semi-modular three-phase AC/DC structure is proposed for SST-based fast charging stations. The proposed system employs single-stage indirect matrix-based AC/DC converters. A single full-bridge rectifier is used for each phase of the medium voltage (MV) grid so that each AC/DC module does not need a voltage rectifier. As a result, the number of semiconductor devices in the proposed system is reduced significantly compared with other existing SST-based systems. A decentralized control scheme without high-speed communication has been developed to regulate the input and output currents while keeping the voltages of each module balance. A design of a 360-kW system has been carried out to evaluate the efficiency of the proposed system, which is 97.7 % at rated power. With delta connection in three-phase system, a third harmonic current can be injected to the phase currents to increase the output current and power by 15 %. Simulation results for a 360-kW 3.3-kV system are provided to verify the performance of the proposed system. Finally, a 3-kW hardware prototype has been built and tested to demonstrate the feasibility of the proposed system.

VIEW ORIGINAL LINK:

terça-feira, 5 de setembro de 2023

Mercado da eletromobilidade: mais oportunidade de negócio -Estúdio Intelbras Intersolar SP-2023

 



Palestra ministrada pelo Eng. Jairo Alves Ferreira e Silva - Analista de Produtos e Negócios da INTELBRAS na INTERSOLAR BRASIL 29 à 31 DE AGOSTO 2023 – SÃO PAULO, BRASIL-Intersolar South America Sao Paulo on 29 to 31 August 2023.

segunda-feira, 4 de setembro de 2023

Electric Vehicles Charging Stations’ Architectures, Criteria, Power Converters, and Control Strategies in Microgrids Dominic Savio Abraham 1 , Rajesh Verma 2, Lakshmikhandan Kanagaraj 3, Sundar Rajan Giri Thulasi Raman 4 , Narayanamoorthi Rajamanickam 1 , Bharatiraja Chokkalingam 1,* , Kamalesh Marimuthu Sekar 5 and Lucian Mihet-Popa












Electric Vehicles Charging Stations’ Architectures, Criteria, Power Converters, and Control Strategies in Microgrids by 

Dominic Savio Abraham 1ORCID,Rajesh Verma 2,Lakshmikhandan Kanagaraj 3,Sundar Rajan Giri Thulasi Raman 4ORCID,Narayanamoorthi Rajamanickam 1ORCID,Bharatiraja Chokkalingam 1,*ORCID,Kamalesh Marimuthu Sekar 5 andLucian Mihet-Popa 6ORCID 1 Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India 2 Department of Electrical Engineering Department, King Khalid University, Abha 62529, Saudi Arabia 3 Department of Electrical and Electronics Engineering, Adhiparasakthi College of Engineering, Kalavai 632506, India 4 Department of Electrical and Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India 5 Department of Electrical and Electronics Engineering, Kongu Engineering College, Tamilnadu 638060, India 6 Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Fredrikstad, Norway 


 Abstract 

The usage of electric vehicles (EV) has been increasing over the last few years due to a rise in fossil fuel prices and the rate of increasing carbon dioxide (CO2) emissions. EV-charging stations are powered by existing utility power grid systems, increasing the stress on the utility grid and the load demand at the distribution side. DC grid-based EV charging is more efficient than AC distribution because of its higher reliability, power conversion efficiency, simple interfacing with renewable energy sources (RESs), and integration of energy storage units (ESU). RES-generated power storage in local ESU is an alternative solution for managing the utility grid demand. In addition, to maintain the EV charging demand at the microgrid levels, energy management and control strategies must carefully power the EV battery charging unit. In addition, charging stations require dedicated converter topologies, control strategies, and need to follow set levels and standards. Based on EV, ESU, and RES accessibility, different types of microgrid architecture and control strategies are used to ensure optimum operation at the EV-charging point. Based on the above said merits, this review paper presents different RES-connected architecture and control strategies used in EV-charging stations. It highlights the importance of different charging station architectures with current power converter topologies proposed in the literature. In addition, a comparison of microgrid-based charging station architecture with its energy management, control strategies, and charging converter controls are also presented. The different levels and types of charging stations used for EV charging, in addition to controls and connectors used, are also discussed. An experiment-based energy management strategy was developed to control power flow among the available sources and charging terminals for the effective utilization of generated renewable power. The main motive of the EMS and its control is to maximize the usage of RES consumption. This review also provides the challenges and opportunities in EV-charging, and parameters in selecting appropriate charging stations.




domingo, 3 de setembro de 2023

A Low Voltage Single Phase Online Uninterruptible Power Supply System Based on APFC and Fuzzy PID Algorithm-Shengxian Xu 1, Chen Li 2, Yuru Wang 1,*, Baoying Li 1 1School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, P.R China 2School of Electrical Engineering and Telecommunications, University of New South Wales (UNSW Sydney),

A Low Voltage Single Phase Online Uninterruptible Power Supply System Based on APFC and Fuzzy PID Algorithm
Shengxian Xu 1, Chen Li 2, Yuru Wang 1,*, Baoying Li 1
1 School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, P.R China 
2 School of Electrical Engineering and Telecommunications, University of New South Wales (UNSW Sydney), NSW 2052, Australia

ABSTRACT 
The Uninterruptible Power Supply (UPS) is a kind of power supply with electric energy storage, but most UPS systems bring harmonic pollution to the grid, and the power factor is inaccurate in the boost circuit, the output voltage is unstable. Therefore, an active power factor correction circuit (APFC) based on the current and voltage double closed-loop structure is designed in the boost circuit; besides, the fuzzy PID control algorithm is also proposed in the inverter circuit. The effectiveness of the proposed method can be verified by the computer simulation and real experiments, and there are four main results as follows. Firstly, the actual power factor of the UPS system can reach more than 0.996 with APFC correction circuit; then, the UPS system has the strong robustness and the shorter response time; in addition, the voltage regulation rate of the system remains at 0.083% and the load regulation rate is around 0.056%. Finally, the designed UPS system can provide the stable 36V ± 0.2V (50 ± 0.2Hz) AC power.
View full text: