“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”



sexta-feira, 31 de março de 2017

A PSR single-stage flyback LED driver with simple line regulation and quasi-resonant operation Nie Weidong(聂卫东) 1; 2; Ž, Yu Zongguang(于宗光) 1 , Wang Haibing(王海兵) 2 , Guo Bin(郭斌) 2 , Teng Long(滕龙) 2 , and Yang Lihang(杨力航) -Department of Electronic Engineering, Jiangnan University China

A single-stage flyback driving integrated circuit (IC) for light-emitting diodes (LEDs) is proposed. With an average primary-side current estimation and negative feedback networks, the driver operates in the boundary conduction mode (BCM), while the output current can be derived and regulated precisely. By means of a simple external resistor divider, a compensation voltage is produced on the ISEN pin during the turn-on period of the primary MOSFET to improve the line regulation performance. On the other hand, since the delay time between the time that the secondary diode current reaches zero and the turn-on time of the MOSFET can be automatically adjusted, the MOSFET can always turn on at the valley voltage even if the inductance of the primary winding varies with the output power, resulting in quasi-resonant switching for different primary inductances. The driving IC is fabricated in a Dongbu HiTek’s 0.35 m bipolar-CMOS-DMOS process. An 18 W LED driver is finally built and tested. Results show that the driver has an average efficiency larger than 86%, a power factor larger than 0.97, and works under the universal input voltage (85–265 V) with the LED current variation within 0.5%.



A Single-Stage High-Power-Factor Light-Emitting Diode (LED) Driver with Coupled Inductors for Streetlight Applications - Chun-An Cheng, Chien-Hsuan Chang, Hung-Liang Cheng , Ching-Hsien Tseng and Tsung-Yuan Chung-Department of Electrical Engineering, I-Shou University,TAIWAN

A Single-Stage High-Power-Factor Light-Emitting Diode (LED) Driver with Coupled Inductors for Streetlight Applications Chun-An Cheng, Chien-Hsuan Chang, Hung-Liang Cheng *, Ching-Hsien Tseng and Tsung-Yuan Chung Department of Electrical Engineering, I-Shou University, Dashu District, Kaohsiung City 84001, Taiwan;

This paper presents and implements a single-stage high-power-factor light-emitting diode (LED) driver with coupled inductors, suitable for streetlight applications. The presented LED driver integrates an interleaved buck-boost power factor correction (PFC) converter with coupled inductors and a half-bridge-type series-resonant converter cascaded with a full-bridge rectifier into a single-stage power conversion circuit. Coupled inductors inside the interleaved buck-boost PFC converter sub-circuit are designed to operate in discontinuous conduction mode (DCM) for achieving input-current shaping, and the half-bridge-type series resonant converter cascaded with a full-bridge rectifier is designed for obtaining zero-voltage switching (ZVS) on two power switches to reduce their switching losses. Analysis of operational modes and design equations for the presented LED driver are described and included. In addition, the presented driver features a high power factor, low total harmonic distortion (THD) of input current, and soft switching. Finally, a prototype driver is developed and implemented to supply a 165-W-rated LED streetlight module with utility-line input voltages ranging from 210 to 230 V.

View Full-Text :

A Single-Stage LED Tube Lamp Driver with Power-Factor Corrections and Soft Switching for Energy-Saving Indoor Lighting Applications Chun-An Cheng Department of Electrical Engineering Taiwan

This paper presents a single-stage alternating current (AC)/direct current (DC) light-emitting diode (LED) tube lamp driver for energy-saving indoor lighting applications; this driver features power-factor corrections and soft switching, and also integrates a dual buck-boost converter with coupled inductors and a half-bridge series resonant converter cascaded with a bridge rectifier into a single-stage power-conversion topology. The features of the presented driver are high efficiency (>91%), satisfying power factor (PF > 0.96), low input-current total-harmonic distortion (THD < 10%), low output voltage ripple factor (switching (ZVS) obtained on both power switches. Operational principles are described in detail, and experimental results obtained from an 18W-rated LED tube lamp for T8/T10 fluorescent lamp replacements with input utility-line voltages ranging from 100 V to 120 V have demonstrated the functionality of the presented driver suitable for indoor lighting applications.


quinta-feira, 30 de março de 2017

LED lighting control driver design and development of the 12V‐12W class using the voltage controlled ring oscillator - Ki-Soo Kwon Department of Electronic Engineering Graduate School Yeungnam University

LED lighting control driver design and development of the 12V‐12W class using the
voltage controlled ring oscillator

Ki-Soo Kwon
Department of Electronic Engineering
Graduate School
Yeungnam University

This paper presents a Pulse Width Modulation (PWM) controller and circuits for the high power LED (Light Emitting Diode) driver. The controller is available for the remote control through four major operation modes of ON, OFF, Emergency and Power saving using the serial communication. The entire driver circuits use a DC‐DC converter such a Boost topology with dimming, current, thermal control and communication functions for hallway lighting and automobile applications. According to the type and power of LED, a driver IC has already been developed and is produced. This driver IC makes the constant current and constant voltage available. However, if the LED driver allows delicate dimming control and thermal dissipation through allowance of LED off time, PWM control is needed. Therefore, a MCU (Microcontroller unit) for the PWM control as well as a driver IC for driving LEDs is needed. If this operation is embedded at this driver IC, the expense can be reduced. The LED controller integrated circuit (IC) was designed, simulated and fabricated in 0.35μm Magnachip/Hynix.

terça-feira, 28 de março de 2017

An Electrical Method for Junction Temperature Measurement of Power Semiconductor Switches- Baker, Nick -Aalborg Universy-DENMARK

An Electrical Method for Junction Temperature Measurement of Power Semiconductor Switches Baker, Nick Aalborg Universy-DENMARK 
 Dissertation submitted: April 6th 2016 PhD supervisor: Prof. Stig Munk-Nielsen Aalborg University, Denmark PhD
committee: Professor Josep Guerrero (chairman) Aalborg University Dr. Gernot J. Riedel ABB Cooperate Research Professor Philip Andrew Mawby University of Warwick PhD Series: Faculty of Engineering and Science, Aalborg University

 Power semiconductor switches are critical components in power electronic converters and operate in thermally stressful environments. The junction temperature of a power semiconductor directly influences its power loss and is intrinsically linked to numerous failure mechanisms. Knowledge of this temperature is therefore important for optimal operation and for reliability reasons. If the junction temperature is known during the operation of a converter, real-time condition monitoring and active thermal control systems could be developed to improve system reliability. Performing direct measurements of junction temperature is difficult since the power semiconductor is generally encapsulated inside an array of packaging materials. Alternatively, the electrical behaviour of a semiconductor largely depends on temperature. If this relationship is known, the electrical parameters of the device can be monitored and used to estimate the junction temperature. These are known as Temperature Sensitive Electrical Parameters (TSEPs) and are one way to carry out non-invasive, real-time junction temperature measurements on fully packaged devices. Nevertheless, successful implementation of these techniques during the normal operation of a power semiconductor is thus far limited. Often holding back their use is the need to compensate for inherent fluctuations caused by a constantly changing electrical environment (or alternatively requiring interruption to normal operation to force fixed electrical conditions), and significant uncertainty over accuracy. As a result, this PhD aims to develop new methods, or improvements to existing methods, for junction temperature measurement via TSEPs during the operation of power semiconductor switches. In Chapter 1, the state-of-the-art in the topic of junction temperature measurement is introduced. A literature review of TSEPs investigated for use in operating power semiconductor switches is then provided. From this, several implementation issues are identified and used to formulate technical objectives for the PhD thesis. Chapter 2 introduces the first original contribution of the thesis. Two TSEP-based methods for junction temperature measurement, unpublished in scientific literature before the commencement of the PhD, are presented. The measurement principles are explained, and experimental validation is provided on Insulated-Gate-Bipolar-Transistors (IGBTs). The foremost advantages in the presented TSEPs are that they are measured without interruption to normal IGBT operation, and do not require compensation for varying load current conditions. The primary method presented is referred to as the Peak Gate Current (IGPeak) method, which is selected for further examination in Chapter 3. In Chapter 3, the second scientific contribution of the thesis is provided. Here, the accuracy of the IGPeak method on IGBTs is extensively examined using direct measurements of junction temperature from an Infra-Red camera. The validation is performed on IGBT dies with differing geometry, as well as IGBTs in both healthy and degraded conditions. Finally, IGBTs in a paralleled configuration are investigated. These results in terms of accuracy are compared with a traditional TSEP method commonly found in prior art.

segunda-feira, 27 de março de 2017

How to repair and service Off Grid Hydrid solar Inverter/UPS | Su-Kam 6.25KVA

MARCA SU-KAM Off Gr solar inverter is a highly efficient Inverter having the solar priority on the system. The inverter is designed to first charge through the panel and thereafter through grid if available. The low THD and low no load current in system helps optimizing its performance. Su-Kam’s three phase hybrid solar Inverter supplies pure power, which is actually purer than even the power supplied by the grid, and is 100% safe to run the most sophisticated, expensive and sensitive office equipment, silently. It has already established itself as a most reliable option to Generators at banks/ATM’s, hospitals, petrol pumps, shopping malls to name a few.

A Study on the Design and Evaluation of High Power Induction Lamp System -Young-il Chung

A Study on the Design and Evaluation of High Power Induction Lamp System
Young-il Chung
Dept. Information and Communication Engineering
Graduate school Wonkwang University
Currently, road lightings are installed with less than 400W of existing metal halide lamps. These road lightings are being replaced by energy-saving lightings. Induction lamps are expected to be more actively replaced with targets for tunnel lighting and high ceiling lighting. Therefore, it is necessary to develop high efficiency, high power induction lamps system. In this study, the discharge tube design, lmap gas, lighting circuit, and lighting fixture were designed for the high power of the induction lamps. And Induction lamp system was optimized through electrical, optical, thermal characteristics analysis and simulation. For the development of the high power induction lamp, the induction lamp was fabricated according to the design factors such as gas type, gas pressure, discharge tube, ferrite core size, amalgam, and driving frequency after the improvement of the existing process.

In addition, the design and manufacture of the lighting circuit for the high power induction lamp were carried out. The light distribution characteristics through the optical design of the lighting fixture were compared and analyzed, and the illuminance distribution characteristics were simulated to develop the optimized high power induction lamp system. The discharge tube size of the high power induction lamp was 62mm, and the gas was optimized to Kr 100% and gas pressure 300 ~ 350[mmHg]. When the indium amalgam was applied, the induction lamp maintained the same power. As a result, optimization of the induction lamp, lighting circuit, and lighting fixture was completed in accordance with the rating. The characteristic analysis through the design of the lighting circuit for the induction lamp proceeded to improve and supplement. Based on the optical characteristics of the induction lamp and the system effect according to the driving frequency of the lighting circuit, the driving frequency was optimized to 135kHz. An optical simulation was performed according to the distance between the lamp and the reflector by using the OptisWorks program. and illuminance simulation was performed for each height according to the light distribution by using the Relux program. As a result, the high power induction lamp high ceiling fixture was completed.

In conclusion, Based on the high power induction lamp, ligthing circuit, lighting fixture optimization study was to present a guide for design and evaluation of induction lamp system. It is expected to be applied to additional induction lamp research and development in future.

segunda-feira, 20 de março de 2017




Analysis and Multi-Objective Optimization of Multi-Cell DC/DC and AC/DC Converter Systems ETH ZURICH MATTHIAS JOACHIM KASPER-2016

Analysis and Multi-Objective Optimization of Multi-Cell DC/DC and AC/DC Converter Systems

 A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH presented by MATTHIAS JOACHIM KASPER-2016 
ETH Zurich
Power Electronic Systems Laboratory
Physikstrasse 3 j ETL I14
8092 Zurich j Switzerland
One of the key enabling technologies behind many global megatrends, which are a ecting our lives as individuals and as a society in many different areas, is power electronics. Prominent examples are the shift from conventional energy sources to renewable energy sources, the reduction of greenhouse gas emissions due to the electri cation of mobility, and the trend towards cloud-computing in the information technology area, which are all based on the development of cost-e ective, e cient and compact power electronic systems. In order to ful ll future requirements for power electronic systems, it is therefore of great importance to identify new ways to develop systems with higher e ciency, power density, and reliability.

 The analysis of relevant literature reveals, that improvements of power electronic systems are to a great extent either based on the improvements of speci c components or on the modi cation of known control algorithms and/or topologies. These improvement processes, however, are of evolutionary nature and are not going to provide significant steps of performance improvements compared to today's solutions for the foreseeable future.


quinta-feira, 16 de março de 2017

Eletromagnetismo para Sistemas e Automação -Doutor Rafael Concatto Beltrame - Engenharia de Controle e Automação da Universidade Federal de Santa Maria (UFSM)-BRASIL

Eletromagnetismo para Sistemas e Automação
  O conteúdo disponível nesta página refere-se à disciplina de Eletromagnetismo para Sistemas e Automação do curso de Engenharia de Controle e Automação da Universidade Federal de Santa Maria (UFSM).
  As principais competências e habilidades desenvolvidas ao longo da disciplina são enumeradas a seguir: 
Possuir uma sólida base matemática para solucionar problemas de Eletromagnetismo Compreender os conceitos fundamentais do Eletromagnetismo e as suas aplicações, no que se refere à: Eletrostática Magnetostática Campos variáveis no tempo Ondas eletromagnéticas Linhas de transmissão Equações de Maxwell Softwares
Nesta disciplina são empregados os seguintes softwares:
 FEMM (Simulação em elementos finitos - open source)
Ansys Maxwell (Simulação em elementos finitos - proprietário)
  Eletromagnetismo - Aula 21 - Equações de Maxwell para Campos Variáveis no Tempo

Universidade Federal de Santa Maria - UFSM Disciplina de Eletromagnetismo para Sistemas e Automação Prof. Rafael C. Beltrame - http://www.ufsm.br/beltrame Nesta aula: - Introdução - Lei de Faraday-Lenz - FEM de movimento de FEM de transformador

PAGINA WEB DEL CURSO COMPLETO EN VIDEOS Eletromagnetismo para Sistemas e Automação


Rafael Concatto Beltrame recebeu o grau de Engenheiro Eletricista, Mestre e Doutor em Engenharia Elétrica pela Universidade Federal de Santa Maria (UFSM), em 2008, 2009 e 2012, respectivamente. Também em 2012, graduou-se no Programa Especial de Formação de Professores para a Educação Profissional - Licenciatura Plena. Desde 2005 atua como pesquisador no Grupo de Eletrônica de Potência e Controle (GEPOC). Atualmente é Professor Adjunto no Departamento de Processamento de Energia Elétrica (DPEE) da Universidade Federal de Santa Maria. Tem experiência na área de Engenharia Elétrica, com ênfase em Eletrônica de Potência. Dentre as áreas de interesse estão acionamentos elétricos, síntese e análise de conversores estáticos, técnicas de auxílio à comutação e fontes CA de potência. É membro da Sociedade Brasileira de Eletrônica de Potência (SOBRAEP) e das sociedades IEEE Power Electronics, IEEE Industrial Electronics e IEEE Industry Applications.

2009 - 2012
Doutorado em Engenharia Elétrica.
Programa de Pós-Graduação em Engenharia Elétrica, PPGEE (Conceito CAPES 5).
Universidade Federal de Santa Maria, UFSM, Brasil.
Título: Fontes CA de potência: contribuição ao estudo e ao desenvolvimento de topologias híbridas.
Orientador: Prof. Hélio Leães Hey, Dr. Eng.
Co-orientador: Prof. Cassino Rech, Dr. Eng.

domingo, 12 de março de 2017

quinta-feira, 9 de março de 2017







High-precision,Wideband, High Stable Current Sensing Technology By Kenta Ikeda, Hidekazu Masuda SENIOR STAFF HIOKI E.E. CORPORATION

High-Precision, Wideband, Highly Stable Current Sensing Technology

 Kenta Ikeda and Hidekazu Masuda, Senior Staff at Hioki E.E. Corporation
 Currently, there is demand for high-precision, wideband current measurement in the power electronics field, where typical products include power conversion systems such as power conditioners and inverters. Since launching the Clamp Tester CT-300 (see Figure 1) in 1971, Hioki has supplied a variety of current sensors (see Figure 2) designed for specific measurement applications. This paper describes the features of Hioki’s current sensors along with key considerations in current measurement, with a focus on high-precision, wideband current measurement.


Conception et réalisation d’un convertisseur multicellulaire DC/DC isolé pour application aéronautique Julio Cezar Brandelero - THÉSE DOCTORAT DE LÚNIVERSITÉ DE TOLOUSE-2015

Conception et réalisation d’un convertisseur multicellulaire DC/DC isolé pour application aéronautique Julio Cezar Brandelero
L’électricité prend une place de plus en plus importante dans les systèmes énergétiques embarqués. L’électricité est une forme d’énergie très malléable, facile à transporter et réglable ou transformable avec un très faible taux de pertes. L’énergie électrique, associée à des convertisseurs statiques, est plus facile à maîtriser que, par exemple, l’énergie hydraulique et/ou pneumatique, permettant un réglage plus fin et une réduction des coûts de maintenance. L’évolution de la puissance dans les modèles avioniques est marquante. Avec le nombre croissant de charges électroniques, un avion plus électrique avec un réseau à courant alternatif inclurait un grand nombre de redresseurs AC/DC qui devront respecter les normes de qualité secteur. Une solution pour la réduction de la masse serait de préférer un réseau HVDC (High Voltage DC Bus). Sur les futurs modèles avioniques plus électriques, les concepteurs envisageront des conversions HVDC/DC à partir de l’unité appelée BBCU (Buck Boost Converter Unit). Dans ce cas d’étude, un réseau de distribution en tension continue (±270Vdc) est connecté à un réseau de sécurité basse tension (28Vdc) avec un échange bidirectionnel de puissance pouvant atteindre 10kW. Le convertisseur statique assurant cette liaison représente de nouveaux défis pour l’électronique de puissance en termes de fiabilité, sûreté, détection de panne, rendement et réduction de masse et de coût. Le dimensionnement du convertisseur doit prendre en compte une conception optimale, en aéronautique ce critère est la masse. Dans le processus de dimensionnement et d’optimisation du convertisseur, il est donc impératif de prendre en compte trois facteurs principaux : 1) l’évolution des topologies de conversion, 2) l’évolution des composants actifs et passifs et 3) l’intégration de puissance. La réunion de ces trois facteurs permettra ainsi la miniaturisation des convertisseurs statiques. Dans un premier temps, nous préciserons la démarche adoptée pour le dimensionnement d’un convertisseur en prenant en compte : les topologies actives, les filtres différentiels et le système de refroidissement. Les différents éléments qui composent le convertisseur sont décrits dans un langage informatique orienté objet. Des facteurs de performances seront également introduits afin de faciliter le choix des semi-conducteurs, des condensateurs et du dissipateur pour un convertisseur statique. Dans un deuxième temps, nous présenterons le fonctionnement d’une topologie multicellulaire DC/DC, isolée pour l’application proposée. Nous présenterons les avantages du couplage de différentes phases de ce convertisseur. Nous introduirons les différentes associations des cellules et leurs avantages, possibles grâce à l’isolement, comme la mise en série et en parallèle. Puisque la caractérisation des pertes des semi-conducteurs est essentielle pour le dimensionnement du convertisseur statique, nous proposerons deux approches : un modèle de simulation relativement simple et paramétré à l’aide de seules notices constructeurs ; et une méthode de mesure des pertes dans les semi-conducteurs qui est à la fois précise et compatible avec les composants les plus rapides. En ce qui concerne les composants magnétiques, une surface de réponse des matériaux ferrites sera présentée. Nous allons décrire, par le biais analytique et de simulation, des modèles pour la détermination du champ magnétique à l’intérieur du noyau et des ondulations de courant engendrés. Finalement, en profitant des modèles et des résultats obtenus dans les sections précédentes, nous montrerons le dimensionnement et la réalisation de chaque partie du convertisseur BBCU 100kHz / 10kW. Une perspective d’un design idéal est également présentée.


domingo, 5 de março de 2017

Contribution á l’Optimisation du Dimensionnement de Composants Passifs Intégrés pour l’Electronique de Puissance Kien Lai Dac -DOCTEUR DE L’Université de Grenoble Spécialité : « Génie Electrique»

T H E S E pour obtenir le grade de DOCTEUR DE L’Université de Grenoble Spécialité : « Génie Electrique» préparée au Laboratoire de Génie Electrique de Grenoble dans le cadre de l’Ecole Doctorale « Electronique, Electrotechnique, Automatique, Télécommunication, Signal » présentée et soutenue publiquement par LAI Dac Kien le
 16 Décembre 2010

Contribution à l’Optimisation du Dimensionnement de Composants Passifs Intégrés pour l’Electronique de Puissance

 Introduction générale
Contribution à l’optimisation du dimensionnement de composants passifs intégrés 12 Contexte de l’étude L’électronique de puissance connaît actuellement une évolution vers l’intégration, conséquences des contraintes liées aux besoins de miniaturisation mais aussi de réduction des coût de fabrication. Cette intégration peut se présenter sous forme monolithique sur silicium pour les composants semi-conducteurs, voire pour les composants passifs en très faible puissance ou bien hybride pour des systèmes de plus forte puissance. Dans bon nombre de cas, les systèmes hybrides offrent des possibilités de réduction des volumes et les composants passifs, inductance, transformateur et condensateur, représentent alors un frein à cette miniaturisation. Aujourd'hui les briques technologiques permettant la réalisation de composants passifs, qu'ils soient capacitifs ou inductifs, existent. La mise en œuvre de ces briques a déjà fait l'objet de nombreux travaux aux cours de vingt dernières années. Malheureusement, dans nombre de ces travaux les dimensionnements sont conduits de façon classique ne garantissant pas un résultat optimal que ce soit du point de vue du rendement ou du volume. Pourtant, depuis de nombreuses années, les techniques de simulation connaissent un développement considérable. Les mises en œuvre expérimentales, souvent lourdes et coûteuses sont progressivement remplacées par des études dans lesquelles les outils de simulation prennent une place de plus en plus importante. Le développement des outils de modélisation et d’optimisation des composants en électronique de puissance constitue donc un enjeu important. Pour être utilisable dans un contexte industriel, ces outils de simulation doivent répondre à certains critères : ils doivent permettre d’économiser le temps de mise au point et de ce fait, la simplicité et la rapidité de simulation sont donc une des qualités recherchées mais ils doivent aussi être les plus génériques possibles afin d'être applicable à un grand nombre de cahiers des charges tout en garantissant une finesse de résultat suffisante. C’est dans ce contexte que se situe ce sujet de thèse visant à progresser dans la conception d’alimentations à forte puissance volumique.



sábado, 4 de março de 2017

Modeling and Control of a Three Phase Voltage Source Inverter with an LCL Filter by Aratrik Sarkar A Thesis Master of Science ARIZONA STATE UNIVERSITY May 2015

Modeling and Control of a Three Phase Voltage Source Inverter with an LCL Filter by Aratrik Sarkar A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science ARIZONA STATE UNIVERSITY May 2015

This thesis addresses the design and control of three phase inverters. Such inverters are used to produce three-phase sinusoidal voltages and currents from a DC source. They are critical for injecting power from renewable energy sources into the grid. This is especially true since many of these sources of energy are DC sources (e.g. solar photovoltaic) or need to be stored in DC batteries because they are intermittent (e.g. wind and solar). Two classes of inverters are examined in this thesis. A control-centric design procedure is presented for each class. The first class of inverters is simple in that they consist of three decoupled subsystems. Such inverters are characterized by no mutual inductance between the three phases. As such, no multivariable coupling is present and decentralized single-input single-output (SISO) control theory suffices to generate acceptable control designs. For this class of inverters several families of controllers are addressed in order to examine command following as well as input disturbance and noise attenuation specifications. The goal here is to illuminate fundamental tradeoffs. Such tradeoffs include an improvement in the in-band command following and output disturbance attenuation versus a deterioration in out-of-band noise attenuation. A fundamental deficiency associated with such inverters is their large size. This can be remedied by designing a smaller core. This naturally leads to the second class of inverters considered in this work. These inverters are characterized by significant mutual inductances and multivariable coupling. As such, SISO control theory is generally not adequate and multiple-input multiple-output (MIMO) theory becomes essential for controlling these inverters.

Circuit Systems with MATLAB and PSpice Por Won Y. Yang,Seung C. Lee