“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

OBRIGADO DEUS PELA VIDA,PROTEGENOS E GUARDANOS DE TODO MAL


AUTOR DO BLOG ENG. ARMANDO CAVERO MIRANDA SAO PAULO BRASIL

quarta-feira, 12 de dezembro de 2012

Modeling, Monitoring and Control of Wind Turbine Drive-trains

Summary: The wind turbine drive‐train is an integral part of the turbine that converts rotational kinetic energy from the wind to electrical energy. Ensuring reliable and robust operation of the drive‐train necessitates developing an accurate dynamic response model that includes its aero‐dynamic interaction with the wind, torsional and translational responses of its mechanical components, as well as electro‐mechanical interaction at the generator. This presentation will describe a high‐fidelity lumped mass model of the wind turbine drive‐train, which is integrated with FAST, an openly available aero‐elastic code developed by the National Renewable Energy Laboratory (NREL). Jaspreet Singh Dhupia is an Assistant Professor at Nanyang Technological University, Singapore since July 2008. Prior to that, Prof. Dhupia graduated with a PhD and MS in Mechanical Engineering from the University of Michigan, Ann Arbor, and a B.Tech. from Indian Institute of Technology, Delhi. His doctoral research was carried out at the Center for Reconfigurable Manufacturing Systems funded by National Science Foundation. Currently, his research activities are funded by several government and industrial organizations in Singapore, which include the Ministry of Education, Maritime Port Authority, Rolls-Royce Singapore Pte. Ltd., and ABB Singapore Pte. Ltd. His research focuses on drive-train controls, monitoring, and modeling for different applications, such as ships, aircraft, and wind turbines.

Nenhum comentário:

Postar um comentário