O professor João Antonio Zuffo, do Laboratório de Sistemas Integráveis (LSI) da Universidade de São Paulo, está lançando o livro de ficção científica Flagrantes da Vida no Futuro
Em 2038, você poderá ler esta reportagem por meio de seu clone virtual que estará interligado na grande Teia Global. Tudo isso enquanto você toma seu café da manhã preparado por robôs e, ao mesmo tempo, olha para uma vista virtual da torre Eiffel. Pelo menos é assim o futuro previsto no livro Flagrantes da vida no futuro, de João Antonio Zuffo, professor da Escola Politécnica (Poli) da USP.
O livro de Zuffo é uma ficção científica, que, segundo o autor, não está descompromissada com a evolução tecnológica que vemos hoje. “O tempo pode não ser exatamente este do livro, mas tenho certeza que as coisas citadas irão acontecer”, fala o professor.
No Blog Eletrônica de Potência você encontrará informações sobre teses,artigos,seminarios,congressos,tecnologias,cursos,sobre eletrônica potência. “TEMOS O DESTINO QUE MERECEMOS. O NOSSO DESTINO ESTA DE ACORDO COM OS NOSSOS MERITOS” ALBERT EINSTEIN. Imagination is more important than knowledge, for knowledge is limited while imagination embraces the entire world. EL FUTURO SE CONSTRUYE HOY,EL SUCESSO NO ES FRUTO DE LA CASUALIDAD,SE HUMILDE ,APRENDE SIEMPRE CADA DIA.
AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL
"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"
quarta-feira, 17 de fevereiro de 2010
terça-feira, 16 de fevereiro de 2010
Automotive Electromagnetic Compatibility
Prediction and Analysis of Parasitic
Components in Conductor Layouts
Sabine Alexandersson
Doctoral Dissertation in Industrial Electrical Engineering
Department of Industrial Electrical Engineering and Automation
2008-LUND UNIVERSITY
Abstract
The electronics in the automotive industry is facing a new era where safety
critical functions are electrified, as for example drive-by-wire technology. At
the same time as the number of electrical loads in the vehicles is increasing,
the time to market is decreasing. Full scale prototypes of a vehicle are often
only available at a late stage in the development process where changes are
rather costly. This implies that prediction and simulation of a system are of
importance and are useful already at an early stage of the development
process. There are economic benefits that can be gained by prediction and
simulation of the system such as: reduction of time to market, virtual tests,
virtual prototypes and optimization of electronic circuits with respect to
safety margins of filters.
The high number of electrical loads in the vehicle leads to different cable
harnesses routed along the body and chassis of the vehicle. These cable
harnesses will contain both power conductors and communication
conductors, routed close together. When conductors are routed close to each
other, a signal on one conductor can interfere with the signal on another
conductor. This phenomenon is called crosstalk.
Crosstalk can increase the noise levels, create unplanned spikes or destroy
data on nearby conductors. Hence it should always be a prime suspect in an
electromagnetic interference investigation or a candidate for prediction.
Crosstalk between two conductors is coupled by the mutual inductance and
capacitance. When these parameters are known, the crosstalk can be
estimated by using a circuit simulation.
The mutual inductance and capacitance between the conductors as well as the
self inductance and capacitance of each conductor depend on the
surrounding environment. This implies that the conductor layout is an
important factor when it comes to designing a system that is robust against
crosstalk.
Chapter 2
Automotive electromagnetic compatibility
Components in Conductor Layouts
Sabine Alexandersson
Doctoral Dissertation in Industrial Electrical Engineering
Department of Industrial Electrical Engineering and Automation
2008-LUND UNIVERSITY
Abstract
The electronics in the automotive industry is facing a new era where safety
critical functions are electrified, as for example drive-by-wire technology. At
the same time as the number of electrical loads in the vehicles is increasing,
the time to market is decreasing. Full scale prototypes of a vehicle are often
only available at a late stage in the development process where changes are
rather costly. This implies that prediction and simulation of a system are of
importance and are useful already at an early stage of the development
process. There are economic benefits that can be gained by prediction and
simulation of the system such as: reduction of time to market, virtual tests,
virtual prototypes and optimization of electronic circuits with respect to
safety margins of filters.
The high number of electrical loads in the vehicle leads to different cable
harnesses routed along the body and chassis of the vehicle. These cable
harnesses will contain both power conductors and communication
conductors, routed close together. When conductors are routed close to each
other, a signal on one conductor can interfere with the signal on another
conductor. This phenomenon is called crosstalk.
Crosstalk can increase the noise levels, create unplanned spikes or destroy
data on nearby conductors. Hence it should always be a prime suspect in an
electromagnetic interference investigation or a candidate for prediction.
Crosstalk between two conductors is coupled by the mutual inductance and
capacitance. When these parameters are known, the crosstalk can be
estimated by using a circuit simulation.
The mutual inductance and capacitance between the conductors as well as the
self inductance and capacitance of each conductor depend on the
surrounding environment. This implies that the conductor layout is an
important factor when it comes to designing a system that is robust against
crosstalk.
Chapter 2
Automotive electromagnetic compatibility
Automatic modelling of Power Electronic Converter, Average model
Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009
Loig ALLAIN
LMS
La Cité Internationale, 84 quai Charles de
Gaulle,F- 69006 LYON
loig.allain@lmsintl.com
Automatic modelling of Power Electronic Converter, Average model
construction and Modelica model generation
Thermal modeling of a medium frequency transformer
Author: | Kalle Ilves |
Title: | Thermal Modelling of a Medium Frequency Transformer |
School: | Royal Institute of Technology |
Date: | March 2009 |
Type: | MastersThesis |
Abstract
This thesis covers thermal modeling of a medium freuqency transformer. The
geometry of the transformer and the thermal properties of the di erent parts
are used to derive thermal resistances that can be put together in an equivalent
circuit describing the thermal system. The transformer is immersed in oil and
it is found that convective heat transfer through the oil must be included in the
model. The dynamic behaviour of the transformer is also modeled by including
thermal capacitances in the circuit.
The model is evaluated by measuring the primary winding and core temperature
while the transformer is heated. The primary winding temperature is measured
by measuring its electical resistance. The chosen method is discussed along
with the di erence between the measured and estimated response of the
thermal system
READ FULL THESIS HERE
Assinar:
Postagens (Atom)