AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

segunda-feira, 21 de maio de 2012

Maxwell's Equations and Electromagnetic Waves I


 Fundamentals of Physics, II (PHYS 201) Waves on a string are reviewed and the general solution to the wave equation is described. Maxwell's equations in their final form are written down and then considered in free space, away from charges and currents. It is shown how to verify that a given set of fields obeys Maxwell's equations by considering them on infinitesimal cubes and loops. A simple form of the solutions is assumed and the parameters therein fitted using Maxwell's equations. The wave equation follows, along with the wave speed equal to that of light (3 x 10^8), suggesting (correctly) that light is an electromagnetic wave. The vector relationship between the electric field, the magnetic field and the direction of wave propagation is described. 00:00 - Chapter 1. Background 04:43 - Chapter 2. Review of Wave Equation 20:01 - Chapter 3. Maxwell's Equations 56:47 - Chapter 4. Light as an Electromagnetic Wave Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses

9. Magnetism II


 Fundamentals of Physics, II (PHYS 201) The mechanism by which electric currents produce a magnetic field (Law of Biot-Savart) is discussed in greater detail. The field due to a single loop and an infinite wire are computed. Ampere's Law is derived. The operation of the DC electric motor is used to illustrate the torque generated on moving charges in a magnetic field. 00:00 - Chapter 1. Review of Magnetic Fields 14:00 - Chapter 2. Torque on Charge moving in Magnetic Field 20:56 - Chapter 3. Magnetic effects produced by electric currents 51:26 - Chapter 4. Ampere's Law Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses

11. Lenz's and Faraday's Laws


Fundamentals of Physics, II (PHYS 201) The electric effect of a changing magnetic field is described using Faraday's Law. The direction of the current so generated is given by Lenz's Law. The operation and energy accounting of the generator are described. The concept of inductance is introduced. The Betatron is described as an example of Faraday's Law. Self and mutual inductance are introduced. The energy density in a magnetic field is derived. 00:00 - Chapter 1. Review of Lenz and Faraday's Law 25:37 - Chapter 2. The power generator 37:45 - Chapter 3. Mutual and self inductance 64:10 - Chapter 4. Energy density of a magnetic field Complete course materials are available at the Open Yale Courses website: http://open.yale.edu/courses This course was recorded in Spring 2010.