No Blog Eletrônica de Potência você encontrará informações sobre teses,artigos,seminarios,congressos,tecnologias,cursos,sobre eletrônica potência. “TEMOS O DESTINO QUE MERECEMOS. O NOSSO DESTINO ESTA DE ACORDO COM OS NOSSOS MERITOS” ALBERT EINSTEIN. Imagination is more important than knowledge, for knowledge is limited while imagination embraces the entire world. EL FUTURO SE CONSTRUYE HOY,EL SUCESSO NO ES FRUTO DE LA CASUALIDAD,SE HUMILDE ,APRENDE SIEMPRE CADA DIA.
AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL
"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"
quinta-feira, 2 de abril de 2015
Design and control of unified power conversion system for EV electric vehicle -Park,SangHoon Dept. of Mechatronics Engineering-Sungkyunkwan University
Design and control of unified power conversion system for EV
ABSTRACT
Most developed countries that produce vehicles and automobile companies invest in lots of budgets for developing electric vehicle to reduce the use of fossil fuel. Particularly, as the battery technology has been made rapid progress, electric vehicles are able to operate with only battery system. In this context, battery charger connected with grid is required to charge the batteries attached with vehicles. Battery charger charges the battery bank through using the electrical energy of grid, and the operation is similar with that fossil fuel is injected into the gas tank of an internal-combustion engine. This system requires input power factor controller and energy conversion system for charging the battery bank, and the system generally consists of diode rectifier and DC/DC converter or single stage AC/DC PWM converter. In the case of the charger that consists of diode rectifier and DC/DC converter, based on the voltage level of battery, the battery is charged through using buck type or boost type DC/DC converter, and the input power factor is controlled as well. On the other hand, AC/DC PWM converter contains single stage circuit that consists of power semi-conductor switching devices instead of diode rectifier, and the converter charges battery and controls input power factor. Moreover, the structures of energy conversion system to control motor are classified into two types. The first type is that the voltage and capacity of battery bank is bulky. In this case, the battery bank is employed as the input of inverter. The inverter supplies energy for operating to motor and transports free-wheeling energy generated when vehicle brakes suddenly to the battery bank through simple rectifying operation. The second type is that the voltage and capacity of the battery bank is comparably low. When the vehicle is operating, the Bi-directional DC/DC converter boosts the battery energy until the voltage is same as that of inverter DC-link. On the other hand, when the vehicle is braking, the free-wheeling energy is charged into the battery bank through the Bi-directional DC/DC converter.
In this paper, battery charger used for electric vehicle as an energy conversion system, Bi-directional DC/DC converter, and three-phase voltage source inverter were designed. The inverter performs the vector control of interior synchronous permanent magnet motor for electric vehicle. Also, depending on the driving mode, simulation was performed through using the designed energy conversion system. The battery charger charges four 12[V] series connected lead battery bank with single commercial power, and the charger was designed based on AC/DC PWM buck converter. The capacity of the employed battery bank is 48[V]/100[Ah], and the battery bank was charged in constant current control condition with 0.2[C-rate], 20[A]. The Bi-directional DC/DC converter was designed based on three-phase interleaved type buck-boost DC/DC converter. The designed converter controls the output voltage constantly as 250[V] in operating condition, and the inductor current of each phase was controlled by the designed converter to have same average current value.
Particularly, the DC-link voltage of inverter is controlled in 230~270[V] range by the instantaneous boost and buck operations of Bi-directional DC/DC converter in free-wheeling mode. Due to the operational characteristic of the Bi-directional DC/DC converter, the DC-link voltage of the inverter is able to be stable, and the system shows better performance than vector controlled system since DC-link voltage of the inverter is controlled in definite range when free-wheeling mode is turned into driving mode. Previously mentioned, 1.2[kW] battery charger was designed for the 0.2[C-rate] constant current and 50.7[V] constant voltage control of 48[V]/100[Ah] battery bank, and 4[kW] Bi-directional DC/DC converter for boosting the charged energy of battery bank and three-phase voltage source inverter were designed. The designed energy conversion systems verified the validity of results through presenting the experimental results depending on the driving modes of electric vehicle.
LINK
https://copy.com/8KlrtiJczM6sz0lm
quarta-feira, 1 de abril de 2015
I.A.KVASNIKOV. / Introduction to the theory of electrical conductivity and superconductivity-И.А.КВАСНИКОВ. / ВВЕДЕНИЕ В ТЕОРИЮ ЭЛЕКТРОПРОВОДНОСТИ И СВЕРХПРОВОДИМОСТИ
SISTEMA FOTOVOLTAICO INTERLIGADO À REDE ELÉTRICA COM CONTROLE DE FLUXO DE POTÊNCIA FEITO POR UM CONVERSOR CC-CC ISOLADO-SAMUEL SOARES QUEIROZ-Engenharia Elétrica-Universidade Federal do Ceará-BRASIL
SISTEMA FOTOVOLTAICO INTERLIGADO À REDE ELÉTRICA COM
CONTROLE DE FLUXO DE POTÊNCIA FEITO POR UM CONVERSOR CC-CC
ISOLADO
SAMUEL SOARES QUEIROZ
Monografia apresentada para obtenção dos
créditos da disciplina Trabalho de Conclusão
de Curso do Centro de Tecnologia da
Universidade Federal do Ceará, como requisito
parcial à obtenção do título de Graduado em
Engenharia Elétrica. Área de concentração:
Eletrônica de Potência e Acionamentos.
Orientador: Prof. Dr. René Pastor Torrico
Bascopé
FORTALEZA
2014
LINK ORIGINAL MONOGRAFIA COMPLETA
http://www.dee.ufc.br/anexos/TCCs/2014.1/SAMUEL%20SOARES%20QUEIROZ.pdf
terça-feira, 31 de março de 2015
dq-based individual phase control of three-phase four-wire PWM rectifier for UPS -Kim,Seung Ho-Dept.of Electrical Engineering
dq-based individual phase control of three-phase four-wire PWM rectifier for UPS
Kim,Seung Ho
Dept.of Electrical Engineering
Graduate School of Industry and Engineering
Seoul National University of Science and Technology
Recently, the power quality sensitive loads such as computer and communications are so increased that the power supply with good power quality has come to the fore. However, it is possible that the public grid is interrupted by unexpected fault. Therefore, the UPS(uninterruptible power supply) has become an alternative solution to solve this problem. Generally, the UPS consist of a rectifier, a battery, and a PWM inverter and recently they use IGBT PWM rectifier to reduce input THDi and improve the input power factor.
In this configurations the three-phase four-wire input UPS is widely used to eliminate the transformers in the UPS system. The aims of control algorithm for the IGBT PWM rectifier in three-phase four-wire UPS is a unity power factor. The SVM(space vector modulation) is one of the most popular and preferable PWM scheme because it reduces the commutation losses and harmonics in the output voltage, and has higher modulation index than SPWM(sinusoidal PWM) but they need a 3D SVM to control three-phase four-wire PWM rectifier and have some difficulties like as selection of inductance of input inductor and controls the neutral current.
To improve this problem the another control algorithm which controls each phase individually has been suggested but this control algorithm use analog based control so ir's so sensitive and unstable. So another new algorithm which is added d-q control to control algorithm which controls each phase individually is suggested and it can control stably and can reduce neutral current too. This can be seen by computer simulation and experimental result.
LINK
https://copy.com/GC0dLofelGnJ3FcD
Assinar:
Postagens (Atom)