AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

quinta-feira, 29 de dezembro de 2016

Design and Optimization of HF Transformers for High Power DC-DC Applications Mohammadamin Bahmani - Division of Electric Power Engineering Department of Energy and Environment Chalmers University of Technology Goteborg, Sweden 2014









Thesis for The Degree of Licentiate of Engineering 

 Design and Optimization of HF Transformers for High Power DC-DC Applications 
Mohammadamin Bahmani 
 Division of Electric Power Engineering Department of Energy and Environment 
Chalmers University of Technology Goteborg, Sweden 2014 

 Abstract
 Increasing the operational frequency is the most common solution to achieve higher power densities, since the weight and volume of the magnetic part, the bulkiest element in power electronics converters, are then decreased. This solution is well established in low power high frequency applications, while in the recent decade, the possibility of utilizing high frequency at higher power and voltage levels has generated wide interest as well. This work proposes a design and optimization methodology of a high power high frequency transformer accounting for the tuned leakage inductance of the transformer, as well as high isolation requirements, particularly in DC offshore application where a converter module should withstand the MVDC or HVDC link voltage. To achieve this goal, several models were proposed and developed in order to accurately characterize such a transformer. One of these models is a so called pseudo-empirical expression derived from a rigourous regression algorithm based on an extensive 2D finite element simulation scenario, resulting in an accurate analytical expression with an average unsigned deviation of 0.51% and the extreme deviations not higher than 9%. Moreover, using the energy method, an analytical expression to precisely calculate the leakage inductance of high power density magnetic components is proposed. In addition, using the proposed modification of the Steinmetz equation for core loss calculations, general expressions are derived and presented for a rectangular waveform with its associated duty cycle and rise time. Applying the proposed design methodology, in which all the aforementioned models are implemented on a 1 MW case study transformer, indicates that such a transformer can achieve a power density of about 22 kW/L and the efficiencies as high as 99.74%. Moreover, with respect to the isolation requirements, desired leakage inductance and the magnetic material used, a critical operating frequency can be found above which the transformer does not benefit from volume reduction anymore. Keywords High Power High Frequency Transformer, Isolation Requirements, Leakage Inductance.

 LINK ORIGINAL  THESIS COMPLETE
http://publications.lib.chalmers.se/publication/195670-design-and-optimization-of-hf-transformers-for-high-power-dc-dc-applications

Direct download link
http://publications.lib.chalmers.se/records/fulltext/195670/195670.pdf

quarta-feira, 28 de dezembro de 2016

LED lighting control driver design and development of the 12V‐12W class using the voltage controlled ring oscillator Ki-Soo Kwon -Department of Electronic Engineering Graduate School Yeungnam University SOUTH KOREA






M. S. Thesis
 LED lighting control driver design and development of the 12V‐12W class using the voltage controlled ring oscillator- Ki-Soo Kwon
Department of Electronic Engineering Graduate School Yeungnam University (Advised by Professor Young-suk Suh)

전압제어 링 발진기를 이용한
12V-12W급 LED 조명제어 구동회로

설계 및 개발

Abstract
This paper presents a Pulse Width Modulation (PWM) controller and circuits for the high power LED (Light Emitting Diode) driver. The controller is available for the remote control through four major operation modes of ON, OFF, Emergency and Power saving using the serial communication M. S. Thesis LED lighting control driver design and development of the 12V‐12W class using the voltage controlled ring oscillator Ki-Soo Kwon Department of Electronic Engineering Graduate School Yeungnam University (Advised by Professor Young-suk Suh) Abstract This paper presents a Pulse Width Modulation (PWM) controller and circuits for the high power LED (Light Emitting Diode) driver. The controller is available for the remote control through four major operation modes of ON, OFF, Emergency and Power saving using the serial communication The entire driver circuits use a DC‐DC converter such a Boost topology with dimming, current, thermal control and communication functions for hallway lighting and automobile applications. According to the type and power of LED, a driver IC has already been developed and is produced. This driver IC makes the constant current and constant voltage available. However, if the LED driver allows delicate dimming control and thermal dissipation through allowance of LED off time, PWM control is needed. Therefore, a MCU (Microcontroller unit) for the PWM control as well as a driver IC for driving LEDs is needed. If this operation is embedded at this driver IC, the expense can be reduced. The LED controller integrated circuit (IC) was designed, simulated and fabricated in 0.35μm Magnachip/Hynix.

sábado, 24 de dezembro de 2016

DR. Slobodan Cuk - Group POWER ELECTRONICS INSTITUTE



Prof Gustavo Castelo Branco, Prof Slobodan Cuk e Prof Armando Cavero Miranda -Brazilian Power Electronics Conference -Cobep/Spec - 2015 -FORTALEZA-CEARÁ-BRASIL

  DR. Slobodan Cuk 

I am Yugoslav/Serbian who came to United States as an immigrant on flight from Belgrade, Yugoslavia on February 29, 1972 sponsored by NASA. NASA first supported at Santa Clara my MS thesis: “Stability Investigations of the Spinning Skylab” and my 2-year doctorate at Caltech from Sept. 1974 to Dec. 1976. This latter work is now part of the new Vol. 4: “State Space Averaging and Cuk converters”. Vol.1 and Vol. 4 are now combined into a 624-page 40-th anniversary paperback edition while Vol.2 and vol. 3 are combined into 631-page paperback. Kindle editions are also available now individually and as four volume bundle. 1. teslaco.com 2. YouTube.com/c/slobodancukTESLAco 3. Amazon.com/author/slobodancuk 4. linkedin.com/groups/7045487. 5. cuk@teslaco.com; 6. Linkedin.com/in/slobodancuk. Many generations of engineers used these books to get into emerging Power Electronics field and more than 4,000 used them as textbooks in courses I presented. One of my 35 PhD students, now professor, endorsed these books on Amazon with: “This Power Electronics Series is a record of a Big Bang in the History of Power Electronics!” The combined vol.1 and vol.4 paperback and my past research work led me to conclude that a critical re-evaluation is badly needed of the conventional buck, boost, flyback, forward, bridge-type, LLC and other converters which dominated industry for the last 60 years! This is now addressed in the upcoming volume 5! The time has now also come for their replacement by new Power Electronics System Technology based on three new Resonant/PWM type switching methods, related host of novel converter topologies and new magnetics structures I introduced in last 6 years via patents, articles and presentations! They and my contemporary column with articles on teslaco.com home page are slated for upcoming Volume 6 of this series! A well respected Power Electronics expert recently commented to his LinkedIn group: “You should all read everything that Dr. Ćuk has ever written!”.

LINK
https://www.amazon.com/Slobodan-Cuk/e/B00IYCSWQ0

terça-feira, 20 de dezembro de 2016

Efficiency Improvement of Flyback Converter Using Stepped-Airgap Inductor 계단형 공극 인덕터를 이용한 Flyback Converter의 효율 개선 Yong-Hwan Shin - Department of Electrical Engineering - Gyeongsang National University-South Korea








Efficiency Improvement of Flyback Converter
Using Stepped-Airgap Inductor

계단형 공극 인덕터를 이용한 Flyback Converter의 효율 개선
Yong-Hwan Shin
Department of Electrical Engineering
Graduate School
Gyeongsang National University

Abstract
This thesis deals with the efficiency improvement of flyback converter using stepped-airgap transformer, in order to improve the efficiency and/or power density of power electronic systems. The stepped-airgap inductor has been proposed for the flyback converter in order to improve the efficiency over the entire load range, especially light load. The design procedure is also presented. The center leg has typical air gap while the outer gap has a step-shape core. The inductance of the flyback transformer is increased at light load, so that CCM operation can be extended to lighter load. In addition, both the air gaps in the center and outer legs operate at heavy load, so that the AC winding loss can be reduced. The usefulness of the proposed flyback transformer is experimentally verified and compared with the conventional flyback transformer with one inductance value. The experimental results show that the proposed stepped-airgap transformer has higher efficiency at not only light load but also heavy load. Especially, light load efficiency can be much improved. The first part of the thesis introduced method improving flyback converter at light load. Improving efficiency is introduced by many other methods at the entire load. Efficiency is also compared with switching frequency and variable inductance at the entire load. To improve efficiency at light load, stepped-airgap core was suggested. The second part of the thesis introduces how to model stepped-airgap for reluctance circuit. Stepped-airgap is calculated by stepped air gap length and stepped core area. Inductance is analyzed by relative permeability. According to current, stepped-airgap inductor have linear, saturated and hard saturated region. To analyze stepped-airgap is also calculated by flux intensity. Finally, stepped-airgap inductor is summarized by the inductance and relative permeability according to inductor current. The third part of the thesis deals with design of stepped-airgap inductor and flyback transformer. Stepped-airgap is simulated by Maxwell 3D and PSIM simulation tools according to inductor current. To improve efficiency of flyback converter can extend the CCM range with changeable inductance value. Before experiment of flyback converter, simulation is preceded using Maxwell 3D program to confirm permeance, relative permeability value and flux density at stepped core. The operation of flyback converter with varying load current is also simulated by PSIM program. The fourth part of the thesis deals with measurement of inductance about stepped-airgap inductor. Inductance is measured by circuit that can measure the inductance according to current. When input current is changed, inductance is measured by LCR Meter using DC power supply. Inductance is also measured to change part of stepped core area. Until now, there is no relative permeability data of PC95 according to current. Relative permeability of PC95 is gathered by measurement in lab. Stepped-airgap inductor is analyzed and modeling about length of air gap and core area by PC95 relative permeability data. Relative permeability of PC95 is also described that inductance curve about change of current and compared with normal air gap inductor. The fifth part of the thesis deals with experiment of flyback converter with stepped-airgap transformer. Efficiency of converter is measured when the load is changed from high to low or low to high. The waveform is measured when the converter is entered the CCM, CRM and DCM. To verify theory the experimental results is confirmed by measured ring of vds voltage for extended CCM range over the entire load. The sixth part of the thesis deals with conclusion of flyback converter with stepped-airgap transformer. Stepped-airgap inductor advantage to improve the efficiency of flyback converter over the entire load range. The thesis researches the pros and cons of the stepped-airgap transformer. Stepped-airgap transformer using variable inductance will improve efficiency of other many converters, especially efficiency of magnetics components.