No Blog Eletrônica de Potência você encontrará informações sobre teses,artigos,seminarios,congressos,tecnologias,cursos,sobre eletrônica potência.
“TEMOS O DESTINO QUE MERECEMOS.
O NOSSO DESTINO ESTA DE
ACORDO COM OS NOSSOS MERITOS”
ALBERT EINSTEIN.
Imagination is more important than knowledge, for knowledge is limited while imagination embraces the entire world.
EL FUTURO SE CONSTRUYE HOY,EL SUCESSO NO ES FRUTO DE LA CASUALIDAD,SE HUMILDE ,APRENDE SIEMPRE CADA DIA.
AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL
"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"
“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”
“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance.
Will Durant”
Linha de Transmissão (LT) Corrente Contínua (CC) +800 kV
Xing/Estreito e de suas Instalações Associadas. Esta LT, com
extensão de 2.086,9 km, interceptará quatro estados – Pará,
Tocantins, Goiás e Minas Gerais. A LT terá início na
Subestação (SE) Xingu, localizada a aproximadamente 17 km da
UHE Belo Monte, no município de Anapu-PA, seguindo até a SE
Estreito, localizada no município de Ibiraci-MG.
Considerando a extensão e importância do empreendimento e
buscando otimizar o planejamento e a execução das obras, a LT
(CC) +800 kV Xingu/Estreito foi dividida em 8 trechos, cada um
com aproximadamente 260 km. Um grupo de quatro construtoras
(EPCistas) será responsável pelos respectivos trechos
contratados, possibilitando, dessa forma, um maior controle por
parte da equipe da SPE S.A.
Um dos Eletrodos será instalado no município de Altinópolis, SP,
e será interligado à Estação Conversora (EC) Estreito por meio
da Linha de Eletrodo, que interceptará 5 municípios: Ibiraci e
Claraval, no Estado de Minas Gerais, e Franca, Patrocínio
Paulista e Altinópolis, no Estado de São Paulo. Já o Eletrodo que
interligará a EC Xingu será instalado em Anapu, PA, com a Linha
de Eletrodo sendo instalada apenas neste município. LOCALIZAÇÃO DO EMPREENDIMENTO
O Mapa de Localização apresenta a localização geográfica do
empreendimento, nos Estados de Pará, Tocantins, Goiás, Minas
Gerais e São Paulo.
OBJETIVOS E JUSTIFICATIVAS DO EMPREENDIMENTO
A Usina Hidrelétrica de Belo Monte, em construção na região de
Altamira e Vitória do Xingu, no Pará, na sua configuração final,
terá capacidade instalada de 11.233 MW, sendo 11.000 MW na
casa de força principal e 233 MW na casa de força secundária.
Por se tratar de uma usina hidrelétrica com grande capacidade
instalada, com potencial para gerar muita energia, parte da
produção durante os meses chuvosos será enviada para os
estados das regiões Sudeste e Nordeste, principais consumidores
do país.
A fim de facilitar e otimizar o escoamento da energia produzida,
foram comparadas diversas tecnologias existentes. Por fim,
optou-se pelo sistema de Corrente Contínua de ±800 kV para
reforço à interligação Norte – Sudeste, além de um sistema em
corrente alternada de 500 kV como reforço às interligações Norte
- Nordeste – Sudeste.
As Instalações Associadas da LT (CC) +800 kV Xingu/Estreito
incluem as Estações Conversoras (EC) Xingu e Estreito, dois
Eletrodos de Terra, com suas respectivas Linhas de Eletrodo,
com extensões de aproximadamente 46 km (Linha de Eletrodo
Xingu) e 74 km (Linha de Eletrodo Estreito), para interligação
desses eletrodos às ECs, e sete Estações Repetidoras (ERs).
SEPOC 2017 is the 10th edition of the Seminar on Power Electronics and Control and this year the conference will be held with the IEEE seal. The meeting will take place at the Technology Center of the Federal University of Santa Maria and is organized by the IEEE Chapters and Student Branch.
The seminar’s objective is to provide interaction among academia and industry to discuss the latest cutting-edge technologies on Power Electronics and Control and their applications. In 2017, the conference is themed on distributed power generation.
Plenary Session 03: Reliability of Power Electronic Systems – Challenges and State-of-the-Art
Speaker: Huai Wang - Aalborg University, Denmark
Huai Wang is currently an Associate Professor and a Research Thrust Leader with the Center of Reliable Power Electronics (CORPE), Aalborg University, Denmark.
His research addresses the fundamental challenges in modelling and validation of power electronic component failure mechanisms, and application issues in system-level predictability, condition monitoring, circuit architecture, and robustness design. Prof. Wang is a lecturer of a 2-day industry/PhD course on Capacitors in Power Electronics Applications, and a 3-day industry/PhD course on Reliability of Power Electronic Systems held annually at Aalborg University. He is an invited speaker at the European Center for Power Electronics (ECPE) workshops, and a tutorial lecturer at leading power electronics conferences (ECCE, APEC, EPE, PCIM, IECON, etc.). He has co-edited a book on Reliability of Power Electronic Converter Systems in 2015, filed four patents in capacitive DC-link inventions, and contributed a few concept papers in the area of power electronics reliability. Prof. Wang received his PhD degree from the City University of Hong Kong, Hong Kong, and Bachelor degree from Huazhong University of Science and Technology, Wuhan, China. He was a visiting scientist with the ETH Zurich, Switzerland, from August to September 2014, and with the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, from September to November 2013. He was with the ABB Corporate Research Center, Baden, Switzerland, in 2009. He received the IEEE PELS Richard M. Bass Outstanding Young Power Electronics Engineer Award, in 2016, for the contribution to the reliability of power electronic conversion systems. He serves as an Associate Editor of IEEE Journal of Emerging and Selected Topics in Power Electronics and IEEE Transactions on Power Electronics.
Single phase transformerless inverter topologies for grid-tied
photovoltaic system: A review
Monirul Islam a,Saad Mekhilef ,Mahamudul Hasan Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya,
Kuala Lumpur 50603, Malaysia Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia Abstract :
Grid-tied inverters are the key components of distributed generation system because of their function as
an effective interface between renewable energy sources and utility. Recently, there has been an
increasing interest in the use of transformerless inverter for low-voltage single-phase grid-tied
photovoltaic (PV) system due to higher efficiency, lower cost, smaller size and weight when compared
to the ones with transformer. However, the leakage current issues of transformerless inverter, which
depends on the topology structure and modulation scheme, have to be addressed very carefully. This
review focuses on the transformerless topologies, which are classified into three basic groups based on
the decoupling method and leakage current characteristics. Different topologies under the three classes
are presented, compared and evaluated based on leakage current, component ratings, advantages, and
disadvantages. An examination of demand for the inverter, the utility grid, and the PV module are
presented. A performance comparison in MATLAB/Simulink environment is done among different
topologies. Also an analysis has been presented to select a better topology. Finally, based on the analysis
and simulation results, a comparison table has been presented. Furthermore, some important experimental
parameters have been summarized.
LINK http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.702.4372&rep=rep1&type=pdf
H6-type transformerless single-phase inverter
for grid-tied photovoltaic system
ISSN 1755-4535
Received on 20th April 2014
Accepted on 7th October 2014
doi: 10.1049/iet-pel.2014.0251
www.ietdl.org
Monirul Islam, Saad Mekhilef ✉
Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya,
Kuala Lumpur 50603, Malaysia
✉ E-mail: saad@um.edu.my
Abstract:
There has been an increasing interest in transformerless inverter for grid-tied photovoltaic (PV) system because
of the benefits of lower cost, smaller volume as well as higher efficiency compared with the ones with transformer.
However, one of the technical challenges of the transformerless inverter is the safety issue of leakage current which
needs to be addressed carefully. In addition, according to the international regulations, transformerless inverter should
be capable of handling a certain amount of reactive power. In this study, a new H6-type transformerless inverter for
grid-tied PV system is proposed that can eliminate the threat of leakage current. The proposed topology has also the
capability to inject reactive power into the utility grid. Three-level output voltage employing unipolar sinusoidal pulsewidth
modulation can be achieved with the proposed topology. The proposed topology structure and detail operation
principle with reactive power control are investigated. The relationship among the existing topologies and their
reactive power control capability are also discussed. The proposed topology is simulated in MATLAB/Simulink software
to initially verify the accuracy of theoretical explanations. Finally, a universal prototype rated 1 kW has been built and
tested. The experimental results validate the theoretical analysis and simulation results.
VIEW COMPLETE TEXT: https://pdfs.semanticscholar.org/43da/3251d204cbce6582f68347422b84d95e4a1f.pdf