Characterization and design of the switching frequency rise of a 3-phase inverter with GaN transistors by Rémi Perrin
Abstract
The French industrial project MEGaN aims to develop a power module based on HEMT compost in GaN. One of the industrial applications concerns aeronautics with a high constraint in galvanic isolation (> 100 kV / s) and in ambient temperature (200 ° C). The thesis work was focused on a power module brick (650 V 30 A inverter arm). The objective is to achieve a prototype of thin form factor, 30 cm2 and embedding all the driver functions, driver power supply, bus capacity and phase current sensor. This objective implies high energy efficiency, and respect for galvanic insulation while the surface stress is high. The manuscript, in addition to the state of the art relating to the power module and in particular that based on GaN HEMT transistor, discusses a micro-transformer-based control signal isolation solution. Micro-transformer prototypes were characterized and aged for 3000 hours to assess the robustness of the solution. The work contributed to the characterization of several GaN components in order to mature models for circuit simulation of converter topology. Within the MEGaN collaborative work, our contribution did not concern the design of the integrated circuit (grid driver), while having participated in the validation of the specifications, but a power supply strategy for the grid driver. A first isolated power supply proposal for the gate driver favored the use of low-voltage GaN components. The resonant flyback topology with clamp makes it possible to get the most out of these GaN components but poses the constraint of the power transformer. Several technologies for the realization of the transformer have been validated experimentally and in particular an original proposal for the burial of the magnetic component within a high-temperature polymer substrate. In particular, an inexpensive manufacturing process makes it possible to obtain a reliable device (1000 h of cycling between - 55; + 200 ° C), with an intrinsic efficiency of 88% for 2 W transferred. The parasitic insulation capacity is reduced compared to previous prototypes. Two prototypes of highly integrated power supplies use either low voltage GaN transistors (2.4 MHz, 2 W, 74%, 6 cm2), or a dedicated integrated circuit in CMOS SOI technology, designed for the application (1.2 MHz, 2 W, 77%, 8.5 cm2). The manuscript then proposes an integrable solution for measuring the phase current of the bridge arm, based on a magnetoresistance. The experimental comparison with respect to a shunt resistance solution. Finally, two converter prototypes are described, one of which has been the subject of an experimental validation demonstrating reduced switching losses.
VIEW FULL TEXT :http://theses.insa-lyon.fr/publication/2017LYSEI001/these.pdf