AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

quinta-feira, 5 de março de 2015

A Study on the Design of 300W Power Factor Correction using Interleaving Method-TAE-WOO KIM DEPT. OF ELECTRICAL ENGINEERING GRADUATE SCHOOL CHANGWON NATURAL UNIVERSITY






ABSTRACT
Generally, critical conduction mode(CRM) boost PFC converter used low power level and continuous conduction mode(CCM) boost PFC converter is used in medium or high power application. Critical conduction mode boost PFC converter can be used in medium or high power application by using interleaving technical. Interleaved critical conduction mode boost PFC converter can reduce current ripple for higher system reliability and smaller buck capacitor and EMI filter size. In this paper, The design of 300W PFC preconverter using interleaving method which can improve light-load efficiency and have many advantage, is presented.

terça-feira, 3 de março de 2015

Power Your Life seminar STMicroelectronics BRAZIL-March 3, 2015 Golden Tower Hotel-SAO PAULO-PARTE1








Power Your Life seminar STMicroelectronics BRAZIL-March 3, 2015 Golden Tower Hotel-SAO PAULO-PARTE2





Power Your Life seminar STMicroelectronics BRAZIL-ENG. ROGERIO BUENO-São Paulo – SP March 3, 2015

 
Power Your Life Seminar Brazil The Power Your Life Seminar goes beyond product presentation and combines new advanced concepts, basic design principles and “real world” application examples. Don’t miss this chance to discover and ask the leading industry experts your questions to help you with your next design.
 Mark your calendars and join us on March 3rd or 5th , 2015 If you have a myST account, click HERE to register NOW. If you do not have a myST account, click HERE to create your account. Seminar Agenda Time Topic 9:00 AM - 9:45 AM Evolution in PFC topologies 9:45 AM - 10:45 AM Fundamentals of LLC 10:45 AM – 11:00 AM Break 11:00 AM - 11:45 AM Primary side sensing techniques: design issues and implementation 11:45 AM - 12:30 AM Understanding of Power MOSFET failure mechanisms and causes 12:30 AM - 1:30 PM Lunch 1:30 PM - 2:15 PM Optimizing the flyback topology for efficiency and standby power 2:15 PM - 3:00 PM Concepts in Digital Power Control 3:00 PM - 3:15 PM Break 3:15 PM - 5:00 PM Digital Power Control Workshop With live demonstration of development tools Seminar Details
Locations: City Date Location São Paulo – SP March 3, 2015 Golden Tower Hotel Rua Dep. Lacerda Franco, 148 – Pinheiros CEP 05418-000 Phone - 5511 3094-2200

sexta-feira, 27 de fevereiro de 2015

DESIGN AND IMPLEMENTATION OF A CURRENT SOURCE CONVERTER BASED ACTIVE POWER FILTER FOR MEDIUM VOLTAGE APPLICATIONS THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ALPER TERC˙IYANLI








DESIGN AND IMPLEMENTATION OF A CURRENT SOURCE CONVERTER BASED ACTIVE POWER FILTER FOR MEDIUM VOLTAGE APPLICATIONS
Terciyanlı, Alper Ph.D., Department of Electrical and Electronics Engineering Supervisor : Prof. Dr. Muammer Ermis¸ Co-Supervisor : Prof. Dr. Is¸ık C¸ adırcı March 2010, 179 pages

This research work is devoted to the design, development and implementation of a Current Source Converter (CSC) based Active Power Filter (APF) for Medium Voltage (MV) applications. A new approach has been proposed to the design of the CSC based APF for reducing the converter kVA rating considerably. This design approach is called the Selective Harmonic Amplification Method (SHAM), and is based on the amplification of some selected harmonic current components of the CSC by the input filter, and the CSC control system, which is specifically designed for this purpose. The proposed SHAM has been implemented on the first industrial CSC based APF for the elimination of 11th and 13th current harmonics of 12-pulse rectifiers fed from Medium Voltage (MV) underground cables in order to comply with IEEE Std. 519-1992. 450 kVA rated APF with only 205 kVA CSC rating has been connected to the MV bus via a coupling transformer of 1600kVA, 34.5/1.1 kV. The power stage of the CSC based APF is composed of water-cooled high voltage IGBT and diode modules. Reference currents to be generated by the CSC are obtained by the use of a selective ha harmonic component. An Active damping method is also used to suppress the oscillations around the natural frequency of the input filter, excluding the harmonic components to be eliminated by APF. Simulation and field test results have shown that SHAM can successfully be applied to a CSC based APF for reduction of converter kVA rating, thus making it a cost-competitive alternative to voltage source converter based APFs traditionally used in industry applications.
 LINK ORIGINAL
http://etd.lib.metu.edu.tr/upload/12611767/index.pdf