AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

segunda-feira, 4 de abril de 2022

A Study on Modulated Carrier Control Method for Power Factor Correction Boost Converter BY Jintae Kim- Interdisciplinary Program in Photovoltaic System Engineering The Graduate School Sungkyunkwan University




















 Ph.D. Dissertation A Study on Modulated Carrier Control Method for Power Factor Correction Boost Converter BY Jintae Kim 
Interdisciplinary Program in Photovoltaic System Engineering
The Graduate School Sungkyunkwan University

 Abstract 
A Study on Modulated Carrier Control Method For Power Factor Correction Boost Converter As demand of electrical devices steeply increases, harmonic pollution on the power grid has attracted concern. This circumstance leads standards such as IEC61000-3-2 and 80-Plus regulating harmonic currents or PF (Power Factor) to have been more stringent. Thus, a PFC (Power Factor Correction) circuit able to improve power quality while reducing current harmonics has been indispensible at the electrical devices. For the reason, the PFC has been constantly researched so that various topologies and control types have been proposed and realized as silicon. So far, many of proposed PFC converters have each optimal operation mode offering good PFC performance such as CCM (Continuous Conduction Mode), DCM (Discontinuous Conduction Mode) or BCM (Boundary Conduction Mode). The same is true of conventional MCC (Modulated Carrier Control) PFC converters. The conventional MCC PFC method does not require sensing the line input voltage and offers very fast dynamic current control by directly comparing an inductor current. These are advantages of the conventional ones. However, these conventional MCC converters enter into DCM by load reduction, the line input current is distorted and harmonic current is increased. In this dissertation, a research on new MCC method is revealed from a study and analysis on the conventional MCC PFC converter. Two types of MCC method are proposed to overcome the problem of the conventional MCC aforementioned. The proposed MCC methods newly employ a circuit to detect DCM region and generate DCM compensation signal in common. Using the compensation, the MCC methods can control the line input current as a desirable sinusoidal waveform, which results in better PFC performance regardless of a line input voltage range or load variation unlike the conventional MCC method. With all them, the proposed method can maintain the advantages of the conventional MCC method and even it can be easily implemented with analog or digital circuits. This dissertation describes the proposed MCC methods and the operating principle. In addition, to verify the proposed methods, they are implemented in 400 W PFC boost converter.

sábado, 26 de março de 2022

Design of Boost power factor corrector based on UC3854 Boost Controle de Tensão e Corrente




















 ABSTRACT

 PFC (Power Factor Correction) is an effective method to reduce harmonic currents in power grids The control circuit and parameters design of the PFC circuit .
As shown in Fig.2, in Boost PFC circuit, the control core is internal multiplier of UC3854DW, through sampling input voltage Vin, input current Iin and output voltage Vo1, the PWM signal is generated to force the input average current to be in phase with the input voltage, so the power factor is close to 1

                 Figure 2. Boost PFC circuit controlled by UC3854

sábado, 12 de março de 2022

Study on Large Air-Gap Bi-directional Wireless Battery Charger for Electric Vehicles Yoo, Kwang Min Department of Electrical Engineering Graduate School, Myongji University -Seoul, South Korea



 Study on Large Air-Gap Bi-directional Wireless Battery Charger for Electric Vehicles 
 by Yoo, Kwang Min
 Department of Electrical Engineering Graduate School, Myongji University Directed by professor Lee Jun Young 

ABSTRACT
 In this paper, we provide battery charging/discharging for electric vehicles, including hybrid car using a wireless power transmission technology. Because the power sources of EV and PHEV are fully or partially supplied from batteries charged from public line, on-board chargers should be mounted. Conventional on-board battery chargers for PHEV or EV have two-stage structure of input current shaper for harmonic reduction followed by DC/DC converter for output control and electrical isolation. And On-board battery charger is installed in the vehicle at all times. So It will account for constant volume of the car. It will contribute a constant fuel consumption of the vehicle by increasing the weight of the electric vehicle. Currently, the most conventional method is plug-in charging, where a copper connected cable forms the power link. There are several disadvantages to this method, which have led to the investigation of inductive charging technology. On-board chargers are burdened by the need for a cable and plug charger, galvanic isolation of the on-board electronics, the size and weight of the charger, and safety and issues with operating in rain and snow. Wireless power transfer (WPT) is an approach that provides a means to address these problems and offers the consumers a seamless and convenient alternative to charging conductively. In addition, it provides an inherent electrical isolation and reduces on-board charging cost, weight and volume. Depletion of fossil fuel reserves and current practice in generation, transmission, distribution, and utilization of energy are major worldwide concerns, for which distributed generation (DG) and harnessing of renewable energy are considered to be partial and acceptable solutions. However, the quality of power delivered by DG systems, particularly those based on wind energy and solar energy, is largely affected by the stochastic nature of their energy production. Consequently, in order to improve the power quality while meeting the demand in the most economical and efficient way, energy suppliers relied on energy storage systems, particularly for DG systems of medium power levels. Among various storage solutions such as flywheels, batteries, super-capacitors, etc., the vehicle-to-grid (V2G) concept, which uses hybrid vehicles or pure electric vehicles (EVs) to store and supply energy back to the grid, is gaining more and more popularity as hybrid.