“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

OBRIGADO DEUS PELA VIDA,PROTEGENOS E GUARDANOS DE TODO MAL


AUTOR DO BLOG ENG. ARMANDO CAVERO MIRANDA SAO PAULO BRASIL

terça-feira, 11 de novembro de 2014

Filtering Methods for DC Link Voltage Control of Common-neutral-type Transformerless Single-phase UPS KIM JI-SU DEPARTAMENT OF ELECTRICAL ENGINEERING GRADUATE SCHOOL KONKUK UNIVERSITY


ABSTRACT

UPS is largely divided into passive-standby, line-interactive, and double-conversion types. Commonly a double-conversion type is used at a site requiring a high reliability. These days, important factors of UPS are high efficiency, low input current distortion, high input power factor, small cabinet size and low price. In this thesis, a common-neutral type transformerless UPS is proposed. A proposed UPS is composed of PFC with 1-switch voltage doubler strategy, half-bridge inverter, separate battery charger and separate battery discharger. PFC with 1-switch voltage doubler strategy and half-bridge inverter are configured as commom-neutral type so that they can convert power without input and output transformer. Therefore input and output transformers can be removed, so the efficiency can be improved and cabinet size can be reduced. Also advantage of PFC with 1-switch voltage doubler strategy and half-bridge inverter is that they need a small number of switching devices so they can simplify driving circuitry and reduce the price. Advantage of separate battery charger and separate battery discharger is that they can make battery voltage lower than DC link voltage so they can reduce the quantity and cost of battery which is an important part of UPS. PI controller was used as voltage controller and current controller of PFC. In order to compensate imbalance of positive and negative DC link voltages, imbalance voltage PI controller was used. In order to compensate leading effect of input current, duty feedforward method was used. Several methods to eliminate 120Hz ripple component in DC voltage feedback were compared with each other. Moving Average resulted in better performance than other methods. Half-bridge was used as inverter circuit. In order to achieve stable static output voltage and improve dynamic characteristic multi-loop control method was used. Finally, the value of proposed UPS was confirmed in the method of simulation and experiment.

Nenhum comentário:

Postar um comentário