AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

GIF 1 GIF 2

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

sábado, 21 de outubro de 2017

Power Conversion Technology for Grid-connected PV inverter-Woo-Jun Cha (차 우 준) Department of Electrical Engineering Pohang University of Science and Technology



Power Conversion Technology for Grid-connected PV inverter 
 Woo-Jun Cha (차 우 준)
 Department of Electrical Engineering 
Pohang University of Science and Technology 2015 
 ABSTRACT 
This thesis proposes hardware circuits and control algorithm of grid-connected photovoltaic (PV) inverters having high efficiency. PV inverter can be classified into singlephase and three-phase inverter according to power capacity. A micro-inverter system is proposed for the single-phase inverter. This system is composed of step-up dc-dc converter that uses an active-clamp circuit with a series-resonant voltage doubler and a high efficiency inverter with single-switch-modulation. During the step-up dc-dc stage, the active-clamp circuit provides zero-voltage switching turn-on, recycles the energy stored in the leakage inductance of the transformer, and limits switch voltage stress. A series-resonant voltage doubler is used on the transformer secondary side to remove the reverse-recovery problem of the rectifier diodes. During the inverter stage, to improve efficiency and reliability in the proposed inverter, only single switch is modulated at switching frequency without shoot-through problem. This whole process minimizes power losses and eliminates a mismatch of a capacity between the PV panel and PV inverter, so the proposed micro-inverter is suitable for use in a single-phase grid connected PV inverter. A prototype design and experimental results are given to verify the proposed system. A novel space-vector modulation (SVM) for a three-phase PV inverter with simple software implementation is proposed. The conventional SVM algorithm for the three-phase PV inverter requires complex computations, such as square root and arctangent, and a sector selection algorithm. The proposed SVM algorithm can determine directly on-state times of switches without complex computations and complex sector selection algorithm. Experimental results show high performance of the proposed algorithm for the three-phase PV inverter.
LINK
http://www.mediafire.com/file/u6wnmz2xww2x80f/POWER_CONVERSION_TECHNOLOGY_FOR_CONNECTED_PV_INVERTER.pdf

Nenhum comentário:

Postar um comentário