AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

terça-feira, 16 de junho de 2020

Design and Development of an X-Ray Machine Francisco Piernas Díaz-UNIVERSIDAD DE GRANADA-2019






1 Introduction
The X-Ray analysis has developed constantly over time since Wilhelm R¨ontgen discovered it’s applications. X-Rays are now used not only for simple radiography. Modern algorithms are capable of reconstruct a three dimensional view of the object, allowing us to recover important information about the inside of the object to study, for example, a human body. Ionizing radiations like X-Rays have also been used to discover the structure of the DNA thanks to X-Ray diffractometry. This project aims to explore the technologies of 2D radiography (sections 10 and 11) and 3D tomographic scans (section 12), and for that, a 3D printable machine is designed, built and tested using a long list of software, tools and parts [28]. One of these parts is an improved Zero Voltage Switching (ZVS) Mazzilli driver, optimized for higher frequency (section 2.1.3). The design and testing is done considering safety, as described in section 9. A Geiger counter is used to ensure that the device is safe to operate and that the operator is not exposed. In addition to the device, three programs written in C++ have been developed. The first one is an original implementation of the inverse Radon transform to perform tomographic reconstructions of the data gathered wih the X-Ray machine and it’s explained in appendix A. The second program, found in appendix B, uses an original algorithm for pseudocolor radiography that tries to improve other algorithms that usually saturates the color of the result. The last program is a numerical model of the Mazzilli ZVS transformer driver inside the machine and it provides useful information about the voltages and currents involved depending on some circuit parameters. It’s found in appendix C.

Nenhum comentário:

Postar um comentário