AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

domingo, 24 de dezembro de 2023

Design and characterization of a three-phase current source inverter using 1.7kV SiC power devices for photovoltaic applications Luis Gabriel Alves Rodrigues THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE ALPES Spécialité : Génie Electrique


 








Design and characterization of a three-phase current source inverter using 1.7kV SiC power devices for photovoltaic applications 

Luis Gabriel Alves Rodrigues 

 THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE ALPES Spécialité : Génie Electrique 

 Abstract

 Classically, the energy conversion architecture found in photovoltaic (PV) power plants includes solar arrays delivering a maximum voltage of 1kV followed by a step-up chopper connected to a three-phase Voltage Source Inverter. This multistage conversion system (DC/DC + DC/AC) is then connected to the medium-voltage grid through a low-voltage/medium-voltage transformer. In order to simplify the PV systems, this research work focuses on the study and implementation of a DC/AC topology employing a single power processing stage: the three-phase Current Source Inverter (CSI). To deal with the inconvenient of high conduction losses when implementing this topology, wide-bandgap Silicon Carbide (SiC) semiconductors are used, allowing to efficiently convert energy while keeping a relatively high switching frequency. Nonetheless, since the available power semiconductor modules on the market are not compatible with the CSI, a novel 1.7kV SiC-based voltage bidirectional module is developed in the context of this thesis. Hence, the dynamic characterization of the new SiC device is carried out and serves as the basis for the design of a 60kW CSI prototype. Finally, the inverter efficiency is evaluated at nominal operating conditions, employing both a calorimetric and electrical methods. The obtained results confirm the CSI ability to operate efficiently at high switching frequencies (η>98.5% @60kHz). The originality of this work lies mainly in the design, characterization and implementation of the new 1.7kV full-SiC power module adapted to the CSI topology.

 Keywords: Power electronics, DC/AC converters, Current Source Inverter (CSI), Silicon Carbide (SiC), Photovoltaics, Power module.



Nenhum comentário:

Postar um comentário