AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

GIF 1 GIF 2

“GRAÇAS A DEUS PELA VIDA,PELA MINHA FAMÍLIA,PELO TRABALHO.PELO PÃO DE CADA DIA,POR NOS PROTEGER DO MAL”

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO”

https://picasion.com/
https://picasion.com/

domingo, 4 de janeiro de 2015

Harmonics Reduction Techniques in Renewable Energy Interfacing Gonverters Ali M. Eltamaly, Ph.D King Saud University Saudi Arabia





INTRODUCTION
 In the recent years there has been growing interest in renewable energy generation along with growing demands for development of a suitable interface system. Low harmonics in line current of the converters used in the utility interface.
  Controlled and uncontrolled converters are used widely in the utility interface of renewable energy systems to reduce cost, harmonic contents in line currents. A detailed third harmonic current injection technique reduce the harmonic contents in line currents of controlled and uncontrolled converters that used in renewable energ'y applications. The approach is based on circulaling third harmonic current from DC link current to line currents of controlled and uncontrolled converters to reduce its THD. A new injected current shape is computed from analysis to achieve sinusoidal utility line currents. A controllable single switch boost converter conrrccted in shunt is employed to circulate the new injected current shape. A method to implement the proposed approach under varying load condition is shown. Analysis,d esign,l imitations,s imulationa nd experimentarl esult are presented. In modern Power electronics converters, three-phase controlled converter is commonly used.

LINK FULL PAPER
http://faculty.ksu.edu.sa/eltamaly/Documents/[3].pdf

LINK ALTERNATIVE
https://copy.com/IApswwIOUqPR0xNt


sábado, 3 de janeiro de 2015

Study on the component analysis of harmonic current to specify the cause of fault in electrical power line Author Park, Chan Heon



 ABSTRACT

Development of power semiconductors has promoted to the advancement of large static power converters. Due to use of these converters, the power quality has become a very important and highly controversial issue in today's industrial environments. Converters of the supplied 60Hz ac to dc or to variable frequency ac power offers more precise speed control and increased efficiencies for many industrial processes. These advantages have accelerated wide spread usage of static power converters. However, these advantages cause disadvantages of increased sensitivity to both the quality of power supplied by the utility and the quality of the power inside the industrial facility. With these trends of industrial environments, both electric utilities and end users of electric power are increasingly concerned about quality of electric power. And the harmonic problem becomes one of the most important issues on the power quality problems. Therefore, this thesis aimed to represents theoretical study, occurence examples, and countermeasure of harmonics. Therefore, in this thesis also introduces terms and generation of harmonics characters based on different loads and clarified the areas of harmonic problems on the industrial facilities. In end of this thesis, it has been discussed for controlling of harmonics. Chapter 3 provided the guidelines for the harmonics level referenced from Korea, Japan, and IEEE std 519-1992. In chapter 4, this thesis presents the results of example study as regards a fault owing to OCGR(Over Current Ground Relay) and another fault owing to N phase line in main transformer of substation. Chapter 5 illustrates the delivered reference for power filters, and suggest real time PQM(Power Quality Management) system to diagnosis harmonics. This paper wishes to express that these study results may contribute to localization of power filters and to resolution of harmonic problems.

segunda-feira, 29 de dezembro de 2014

Design of an LCL-Filter for the Three-Parallel Operation of a Power Converter in Wind Turbines DONG-KEUN YOON AJOU UNIVERSITY






Permanent Magnet Synchronous Generators (PMSG) are widely used in variable-speed wind turbines. However, the power devices must support high currents to get their high-power rating because the PMSG is connected directly to the grid through a back-to-back converter. Therefore, the rated current of the power device can be reduced to one third of the rated value by using a three-parallel operation. The low switching frequency of a high power system may cause an increase in the harmonics found in the output current.
This paper proposes a design scheme for an LCL-filter used for three-parallel operation of a power converter in 2MW-wind turbines. An appropriate design method of the delta configured LCL-filter is also proposed to improve the output power quality in the system. A novel design method for the inner inductance of the LCL-filter is proposed in order to overcome the existing trial and error methods used in designing the filter. LCL-filters typically have a problem with a reduced power factor (PF), due to the capacitor used. To improve the poor PF, a simple compensation method is also proposed. The simulation and experimental results demonstrate that the grid current harmonics are low and the PF is improved.

Research on High Efficiency Non-Isolated Push-Pull Converters with Continuous Current in Solar-Battery Systems Yan Li, Trillion Q. Zheng, and Qian Chen


Research on High Efficiency Non-Isolated Push-Pull Converters with Continuous Current in Solar-Battery SystemsYan Li, Trillion Q. Zheng, and Qian Chen
Abstract
 In order to improve the output efficiency of solar cells and to extend the life span of batteries, the input currents of converters are required to be continuous. If low output voltage ripple is required at the same time, it is obvious that the application of basic two-order converters (such as Buck and Boost derived converters) will not be good enough. In this paper, a lot of non-isolated push-pull converters (NIPPCs) with continuous current will be introduced due to their lower current stress, higher efficiency and better EMC performance. By decomposing the converters into push-pull cells, inductor and free-wheeling diodes, two families of NIPPCs based on single inductor and coupled inductor separately are systematically generated. Furthermore, characteristics analyses for some of the generated converters are also shown in this paper. Finally, two prototypes based on the corresponding typical topologies are built in the lab to verify the theoretical outcomes.
LINK
http://jpe.or.kr/archives/view_articles.asp?seq=852

A Novel Circuit Configuration of UPS with Auxiliary Inverter and Its Specific Control Implementations Katsuya Hirachi and Mutsuo Nakaoka





A Novel Circuit Configuration of UPS with Auxiliary Inverter and Its Specific Control Implementations
Katsuya Hirachi and Mutsuo Nakaoka
RESEARCH AND DEVELOPMENT DIVISION POWER SUPPLY  COMPANY,YUASA,OSAKA JAPAN.
DEPT. OF ELECTRICAL AND ELECTRONICS ENGINEERING  YAMAGUCHI UNIVERSITY
YAMAGUCHI JAPAN

Abstract
 The rapid expansion of small computers over the last 10-odd years has brought about great changes in the circumstances affecting UPSs. There are strong demands that UPSs become much smaller and lighter, and more economical, which has resulted in the wide application of the circuit topology without transformer. A disadvantage of such UPS topology is that the DC link voltage is very high, which invites decreased reliability and increased cost of battery bank. Some circuit configurations were proposed to eliminate this disadvantage, but they still had problems. In this paper, a novel circuit configuration which eliminates these problems is proposed and evaluated by the experimental results of prototype UPS.
LINK
http://jpe.or.kr/archives/view_articles.asp?seq=79
LINK DIRECT
http://manuscript.jpe.or.kr/ltkPSWeb/pub/pubfpfile.aspx?ppseq=79