AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

GIF 1 GIF 2

“GRAÇAS A DEUS PELA VIDA,PELA MINHA FAMÍLIA,PELO TRABALHO.PELO PÃO DE CADA DIA,POR NOS PROTEGER DO MAL”

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO”

https://picasion.com/
https://picasion.com/

segunda-feira, 23 de outubro de 2017

A New High Efficient Transformerless Inverter for Single Phase Grid-tied Photovoltaic System with Reactive Power Control -Monirul Islam Power Electronics and Renewable Energy Research Laboratory (PEARL) Department of Electrical Engineering University of Malaya



A New High Efficient Transformerless Inverter for Single Phase Grid-tied Photovoltaic System with Reactive Power Control
Monirul Islam Power Electronics and Renewable Energy Research Laboratory (PEARL)
Department of Electrical Engineering University of Malaya Kuala Lumpur, Malaysia

 Abstract—There has been an increasing interest in transformerless inverter for grid-tied photovoltaic (PV) system due to low cost, high efficiency, less weight, etc. Therefore, many transformerless topologies have been proposed and verified with real power injection only. Recently, almost every international regulation has imposed that a definite amount of reactive power should be handled by the grid-tied PV inverter. According to the standard VDE-AR-N 4105, grid-tied PV inverter of power rating below 3.68kVA, should attain power factor (PF) from 0.95 leading to 0.95 lagging. In this paper, a new high efficient transformerless topology is proposed for grid-tied PV system. The new topology structure and detail operation principle with reactive power flow is described. The proposed circuit structure does not lead itself to the reverse recovery issues which allow utilizing MOSFET switches to increase the overall efficiency. Finally, to validate the proposed topology, a 1kW laboratory prototype is built and tested. The experimental results show that the proposed topology can inject reactive power into utility grid without any additional current distortion and leakage current. The maximum efficiency and European efficiency of the proposed topology is measured and found to be 98.54% and 98.27%, respectively. 
Keywords—common mode, converter, high efficient, leakage current, reactive power, transformerless. 

LINK ORIGINAL WEB
https://umexpert.um.edu.my/file/publication/00005361_125971.pdf

sábado, 21 de outubro de 2017

Analysis and Design of Single-Phase Photovoltaic Grid-Connected Inverter - Jaehwe Shim Department of Embedded SW Graduate School, Kwangwoon University Seoul, Korea


Analysis and Design of Single-Phase Photovoltaic Grid-Connected Inverter
 Jaehwe Shim Department of Embedded SW 
Graduate School, Kwangwoon University Seoul, Korea 
Abstract
 This paper proposed a new maximum power point tracking(MPPT) algorithm to find true maximum power point(MPP) for mismatched PV(Photovoltaic) modules. And also, various anti-islanding algorithms for grid-connected PV system were analyzed comparatively. At first, in order to have PV PCS maximum power generation efficiency, maximum power point trackers are used to operate a solar PV panel at its MPP. A number of MPPT algorithms has been used in the past such as P&O, IncCond, etc. But these algorithm cannot track true maximum power point under mismatched PV modules caused by clouds, shadow, and snow. The multiple local maxima can be existed on PV characteristic curve under mismatched PV modules. Therefore, the proposed MPPT algorithm, which is capable of tracking the true MPP under mismatched PV, is verified by simulation and experiment. In addition, this paper covered various anti-islanding methods for distributed grid-connected PV PCS. The islanding is that the phenomenon wherein the distributed PV PCS does not detect the interruption due to the power failures and faults, but dose continue operation. Islanding phenomenon can cause to have maintenance engineer in danger and to have application load damaged. Therefore grid-connected PV PCS must be disconnected while detecting the islanding phenomenon within the specified time, which secures safety and reliability. In this paper past various anti-islanding algorithms were explained and verified validity comparatively. For the validity of the proposed MPPT algorithm, 3kW PV system was designed with connected PV simulator.
LINK
http://www.mediafire.com/file/zxhzxcphv8p7la1/Analysis_and_Design_of_Single_Phase_Photovoltaic_Grid_Connected_Inverter.pdf