Nymand
High Efficiency Power Converter
for Low Voltage High Power Applications
Author:Morten Nymand
Supervisor:Michael A. E. Andersen
DTU Electrical Engineering
Technical University of Denmark
Ørsteds Plads
Building 349
DK-2800 Kgs. Lyngby
Denmark
Publishing date: January 2010
Classification: Public
Edition: 1st Edition
Note: This thesis is submitted in partial fulfillment of the requirements
for obtaining the PhD degree at the Technical University of
Denmark.
Copyright: Morten Nymand, 2010
Abstract
The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for
high-power, low-input-voltage to high-output-voltage applications. These converters are
increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo
voltaic based energy systems.
Applications include systems for emergency power back-up
(UPS), de-centralized combined heat and power systems, traction applications such as hybrid
electrical vehicles, forklift trucks and special applications such as low emission power
generation for truck and ship containers, and remote power generation for light towers, camper
vans, boats, beacons, and buoys etc.
In chapter 2, a review of current state-of-the-art is presented. The best performing converters
achieve moderately high peak efficiencies at high input voltage and medium power level.
However, system dimensioning and cost are often determined by the performance at the system
worst case operating point which is usually at minimum input voltage and maximum power.
Except for the non-regulating V6 converters, all published solutions exhibit a very significant
drop in conversion efficiency at minimum input voltage and maximum output power.
In chapter 3, a detailed analysis of dominant loss factors in high power converters for low
voltage applications is presented. The analysis concludes that:
Power transformers for low voltage high power, if properly designed, will have
extremely low leakage inductance.
If optimally designed, boost converters will be much more efficient than comparable
buck type converters for high power low voltage applications.
The use of voltage clamp circuits to protect primary switches in boost converters is no
longer needed for device protection. On the other hand, they will dramatically increase
power losses. Moreover, if a converter is properly designed, primary side voltage clamp
circuits will not even work in low voltage high power converters.
Very high conversion efficiency can be achieved. Peak efficiency of 98% and worst case
minimum efficiency of 96.8% are demonstrated on a 1.5 kW converter.
In chapter 4, the ability to - and challenges involved in - scaling of power converters for low
voltage applications in the power range of 1-10 kW are analyzed. The analysis concludes that
power MOSFETs needs to be paralleled extensively to scale power level to 10 kW. Maintaining
fast current switching and reliable current sharing is essential. Further, the high ac-current
carrying loop on the converter primary side will become increasingly difficult to scale due to
fundamental issues such as physical size of components and penetration depth in copper.
Finally in chapter 5, a new method for partial paralleling of multiple primary power stages in
isolated boost converters is presented. Maximum benefit of scaling in terms of higher efficiency
and lower cost is preserved by only paralleling primary switches and the critical high ac-current
loop. Dynamic current sharing is inherently guaranteed between parallel power stages. The
principle can be applied to all isolated boost type converters and, in principle, an unlimited
number of power stages can be paralleled. Feasibility and operation of the new topology are
demonstrated on a dual 3 kW and a quad 10 kW prototype converter. Measured peak efficiency
is 98.2% and worst case minimum efficiency is between 96.5% and 96.9%.
LINK
http://orbit.dtu.dk/fedora/objects/orbit:82166/datastreams/file_4650370/content
No Blog Eletrônica de Potência você encontrará informações sobre teses,artigos,seminarios,congressos,tecnologias,cursos,sobre eletrônica potência. “TEMOS O DESTINO QUE MERECEMOS. O NOSSO DESTINO ESTA DE ACORDO COM OS NOSSOS MERITOS” ALBERT EINSTEIN. Imagination is more important than knowledge, for knowledge is limited while imagination embraces the entire world. EL FUTURO SE CONSTRUYE HOY,EL SUCESSO NO ES FRUTO DE LA CASUALIDAD,SE HUMILDE ,APRENDE SIEMPRE CADA DIA.
AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL
“GRAÇAS A DEUS PELA VIDA,PELA MINHA FAMÍLIA,PELO TRABALHO.PELO PÃO DE CADA DIA,POR NOS PROTEGER DO MAL”
“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO”

https://picasion.com/


sábado, 6 de janeiro de 2018
segunda-feira, 1 de janeiro de 2018
Laboratório de Microrredes Inteligentes na UNIVERSIDADE FEDERAL DE SANTA CATARINA-BRASIL (uGridLab)
VÍDEO INSTITUCIONAL
Laboratório de Microrredes Inteligentes na UFSC (uGridLab)-UNIVERSIDADE FEDERAL DE SANTA CATARINA ,NOVAS TECNOLOGIAS,NOVOS PARADIGMAS .
LINK DO LABORATORIO
http://ugridlab.paginas.ufsc.br/
sexta-feira, 29 de dezembro de 2017
Linhas de Transmisão - Apresentação da Obra LT CC 800kV XINGU - ESTREITO (BMTE)-BRASIL
Linha de Transmissão (LT) Corrente Contínua (CC) +800 kV Xing/Estreito e de suas Instalações Associadas. Esta LT, com extensão de 2.086,9 km, interceptará quatro estados – Pará, Tocantins, Goiás e Minas Gerais. A LT terá início na Subestação (SE) Xingu, localizada a aproximadamente 17 km da UHE Belo Monte, no município de Anapu-PA, seguindo até a SE Estreito, localizada no município de Ibiraci-MG. Considerando a extensão e importância do empreendimento e buscando otimizar o planejamento e a execução das obras, a LT (CC) +800 kV Xingu/Estreito foi dividida em 8 trechos, cada um com aproximadamente 260 km. Um grupo de quatro construtoras (EPCistas) será responsável pelos respectivos trechos contratados, possibilitando, dessa forma, um maior controle por parte da equipe da SPE S.A. Um dos Eletrodos será instalado no município de Altinópolis, SP, e será interligado à Estação Conversora (EC) Estreito por meio da Linha de Eletrodo, que interceptará 5 municípios: Ibiraci e Claraval, no Estado de Minas Gerais, e Franca, Patrocínio Paulista e Altinópolis, no Estado de São Paulo. Já o Eletrodo que interligará a EC Xingu será instalado em Anapu, PA, com a Linha de Eletrodo sendo instalada apenas neste município.
LOCALIZAÇÃO DO EMPREENDIMENTO
O Mapa de Localização apresenta a localização geográfica do empreendimento, nos Estados de Pará, Tocantins, Goiás, Minas Gerais e São Paulo.
OBJETIVOS E JUSTIFICATIVAS DO EMPREENDIMENTO A Usina Hidrelétrica de Belo Monte, em construção na região de Altamira e Vitória do Xingu, no Pará, na sua configuração final, terá capacidade instalada de 11.233 MW, sendo 11.000 MW na casa de força principal e 233 MW na casa de força secundária. Por se tratar de uma usina hidrelétrica com grande capacidade instalada, com potencial para gerar muita energia, parte da produção durante os meses chuvosos será enviada para os estados das regiões Sudeste e Nordeste, principais consumidores do país. A fim de facilitar e otimizar o escoamento da energia produzida, foram comparadas diversas tecnologias existentes. Por fim, optou-se pelo sistema de Corrente Contínua de ±800 kV para reforço à interligação Norte – Sudeste, além de um sistema em corrente alternada de 500 kV como reforço às interligações Norte - Nordeste – Sudeste. As Instalações Associadas da LT (CC) +800 kV Xingu/Estreito incluem as Estações Conversoras (EC) Xingu e Estreito, dois Eletrodos de Terra, com suas respectivas Linhas de Eletrodo, com extensões de aproximadamente 46 km (Linha de Eletrodo Xingu) e 74 km (Linha de Eletrodo Estreito), para interligação desses eletrodos às ECs, e sete Estações Repetidoras (ERs).
VER RELATORIO COMPLETO NO SEGUINTE LINK ORIGINAL
http://www.bmte.com.br/wp-content/uploads/2016/06/RIMA.pdf
quinta-feira, 28 de dezembro de 2017
10th SEMINAR ON POWER ELECTRONICS AND CONTROL-SANTA MARIA RS - BRAZIL
SEPOC 2017 is the 10th edition of the Seminar on Power Electronics and Control and this year the conference will be held with the IEEE seal. The meeting will take place at the Technology Center of the Federal University of Santa Maria and is organized by the IEEE Chapters and Student Branch.
The seminar’s objective is to provide interaction among academia and industry to discuss the latest cutting-edge technologies on Power Electronics and Control and their applications. In 2017, the conference is themed on distributed power generation.
Plenary Session 03: Reliability of Power Electronic Systems – Challenges and State-of-the-Art
Speaker: Huai Wang - Aalborg University, Denmark Huai Wang is currently an Associate Professor and a Research Thrust Leader with the Center of Reliable Power Electronics (CORPE), Aalborg University, Denmark.
His research addresses the fundamental challenges in modelling and validation of power electronic component failure mechanisms, and application issues in system-level predictability, condition monitoring, circuit architecture, and robustness design. Prof. Wang is a lecturer of a 2-day industry/PhD course on Capacitors in Power Electronics Applications, and a 3-day industry/PhD course on Reliability of Power Electronic Systems held annually at Aalborg University. He is an invited speaker at the European Center for Power Electronics (ECPE) workshops, and a tutorial lecturer at leading power electronics conferences (ECCE, APEC, EPE, PCIM, IECON, etc.). He has co-edited a book on Reliability of Power Electronic Converter Systems in 2015, filed four patents in capacitive DC-link inventions, and contributed a few concept papers in the area of power electronics reliability. Prof. Wang received his PhD degree from the City University of Hong Kong, Hong Kong, and Bachelor degree from Huazhong University of Science and Technology, Wuhan, China. He was a visiting scientist with the ETH Zurich, Switzerland, from August to September 2014, and with the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, from September to November 2013. He was with the ABB Corporate Research Center, Baden, Switzerland, in 2009. He received the IEEE PELS Richard M. Bass Outstanding Young Power Electronics Engineer Award, in 2016, for the contribution to the reliability of power electronic conversion systems. He serves as an Associate Editor of IEEE Journal of Emerging and Selected Topics in Power Electronics and IEEE Transactions on Power Electronics.
LINK : http://farol.ufsm.br/transmissao/transmissao-ao-vivo-sepoc-24102017-09h
quarta-feira, 27 de dezembro de 2017
Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review - Monirul Islam a,Saad Mekhilef ,Mahamudul Hasan
Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review Monirul Islam a,Saad Mekhilef ,Mahamudul Hasan
Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
Abstract :
Grid-tied inverters are the key components of distributed generation system because of their function as an effective interface between renewable energy sources and utility. Recently, there has been an increasing interest in the use of transformerless inverter for low-voltage single-phase grid-tied photovoltaic (PV) system due to higher efficiency, lower cost, smaller size and weight when compared to the ones with transformer. However, the leakage current issues of transformerless inverter, which depends on the topology structure and modulation scheme, have to be addressed very carefully. This review focuses on the transformerless topologies, which are classified into three basic groups based on the decoupling method and leakage current characteristics. Different topologies under the three classes are presented, compared and evaluated based on leakage current, component ratings, advantages, and disadvantages. An examination of demand for the inverter, the utility grid, and the PV module are presented. A performance comparison in MATLAB/Simulink environment is done among different topologies. Also an analysis has been presented to select a better topology. Finally, based on the analysis and simulation results, a comparison table has been presented. Furthermore, some important experimental parameters have been summarized.
LINK
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.702.4372&rep=rep1&type=pdf
Assinar:
Comentários (Atom)




