No Blog Eletrônica de Potência você encontrará informações sobre teses,artigos,seminarios,congressos,tecnologias,cursos,sobre eletrônica potência. “TEMOS O DESTINO QUE MERECEMOS. O NOSSO DESTINO ESTA DE ACORDO COM OS NOSSOS MERITOS” ALBERT EINSTEIN. Imagination is more important than knowledge, for knowledge is limited while imagination embraces the entire world. EL FUTURO SE CONSTRUYE HOY,EL SUCESSO NO ES FRUTO DE LA CASUALIDAD,SE HUMILDE ,APRENDE SIEMPRE CADA DIA.
AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL
"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"
sexta-feira, 19 de abril de 2019
SiC MOSFET 게이트 구동 방식 연구 = A Study on the SiC MOSFET Gate Drive Method-Author Ki-hyun Kim-2019-Department of Electrical and Computer Engineering The Graduate School Pusan National University
A Study on the SiC MOSFET Gate Drive Method Ki-hyun Kim
Department of Electrical and Computer Engineering The Graduate School Pusan National University
Abstract
In this thesis, power MOSFET gate drive IC with novel soft-switching gate drive method and short-circuit protection method is designed and implemented. Designed IC is suitable for driving silicon carbide (SiC) power MOSFET. The proposed gate drive IC, which employs the high side and low side soft-switching controller, can reduce the overshoot and switching loss of the SiC power MOSFET during the turn-on period effectively. The short-circuit protection circuit which is adopted the proposed gate drive IC uses de-saturation detect circuit for detecting the short-circuit condition of the switching device and safely cuts off the short-circuit transient current by using the clamp circuit and the multi-sync drive circuit. The multi-sync drive circuit, which is composed of two n-MOSFET and one soft turn-off controller, adjust the sink current for switch cut-off by 3 steps. In this thesis, simulation and experiment were performed to verify the electrical characteristics of the gate drive IC for the SiC power MOSFETs with the two proposed techniques. The proposed short-circuit protection circuit detects the short-circuit condition within 800 ㎱ and safely cuts off the switching device from the short-circuit condition within 1.4 ㎲ after short-circuit condition detected. With the use of the proposed gate drive IC, switching loss of the SiC power MOSFET decreased by 14 % without sacrificing the overshoot characteristics.
LINK ORIGINAL: http://www.riss.kr/search/detail/DetailView.do?p_mat_type=be54d9b8bc7cdb09&control_no=d1e7f72eff713d63ffe0bdc3ef48d419
LINKALTERNATIVO: https://www.mediafire.com/file/7lvmf7wemwvy57a/silicon_carbide_driver.pdf/file
domingo, 14 de abril de 2019
sexta-feira, 12 de abril de 2019
2019 ON SEMICONDUCTOR POWER SEMINAR SAO PAULO BRAZIL APRIL 30
2019 ON SEMICONDUCTOR POWER SEMINAR SAO PAULO BRAZIL APRIL 30
LINK ORIGINAL REGISTER
https://www.onsemi.com/PowerSolutions/content.do?id=19281&utm_source=hpb&utm_medium=home_page_banner&utm_campaign=AMR_Power_Seminar2019&utm_content=link-landing-page
LINK ORIGINAL REGISTER
https://www.onsemi.com/PowerSolutions/content.do?id=19281&utm_source=hpb&utm_medium=home_page_banner&utm_campaign=AMR_Power_Seminar2019&utm_content=link-landing-page
domingo, 7 de abril de 2019
Converter Using Voltage Doubler Hee-Jun Lee*, Soo-Cheol Shin**, Seok-Jin Hong*, Seung-Wook Hyun*, Jung-Hyo Lee*** and Chung-Yuen Won
Performance Improvement of Isolated High Voltage Full Bridge Converter Using Voltage Doubler Hee-Jun Lee*, Soo-Cheol Shin**, Seok-Jin Hong*, Seung-Wook Hyun*, Jung-Hyo Lee*** and Chung-Yuen Won
Abstract – The performance of an isolated high voltage full bridge converter is improved using a voltage doubler. In a conventional high voltage full bridge converter, the diode of the transformer secondary voltage undergoes a voltage spike due to the leakage inductance of the transformer and the resonance occurring with the parasitic capacitance of the diode. In addition, in the phase shift control, conduction loss largely increases from the freewheeling mode because of the circulating current. The efficiency of the converter is thus reduced. However, in the proposed converter, the high voltage dual converter consists of a voltage doubler because the circulating current of the converter is reduced to increase efficiency. On the other hand, in the proposed converter, an input current is distributed when using parallel input / serial output and the output voltage can be doubled. However, the voltages in the 2 serial DC links might be unbalanced due to line impedance, passive and active components impedance, and sensor error. Considering these problems, DC injection is performed due to the complementary operations of half bridge inverters as well as the disadvantage of the unbalance in the DC link. Therefore, the serial output of the converter needs to control the balance of the algorithm. In this paper, the performance of the conventional converter is improved and a balance control algorithm is proposed for the proposed converter. Also, the system of the 1.5[kW] PCS is verified through an experiment examining the operation and stability.
LINK
http://www.kpubs.org/article/articleDownload.kpubs?downType=pdf&articleANo=E1EEFQ_2014_v9n6_2224
Assinar:
Postagens (Atom)