This is an introductory course on the basics of electronic circuits. The covered subjects are DC and AC circuits, diodes, semiconductors, and transistors. The students are required to become familiear with electronic circuits and their roles in modern experimental instruments. Since this is not an engineering course, theoretical or analytical details on electronic circuits will not be covered. Instead, basic concepts of circuit elements and practical methods on how to build electronic circuits will be emphasized.
No Blog Eletrônica de Potência você encontrará informações sobre teses,artigos,seminarios,congressos,tecnologias,cursos,sobre eletrônica potência. “TEMOS O DESTINO QUE MERECEMOS. O NOSSO DESTINO ESTA DE ACORDO COM OS NOSSOS MERITOS” ALBERT EINSTEIN. Imagination is more important than knowledge, for knowledge is limited while imagination embraces the entire world. EL FUTURO SE CONSTRUYE HOY,EL SUCESSO NO ES FRUTO DE LA CASUALIDAD,SE HUMILDE ,APRENDE SIEMPRE CADA DIA.
AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL
“GRAÇAS A DEUS PELA VIDA,PELA MINHA FAMÍLIA,PELO TRABALHO.PELO PÃO DE CADA DIA,POR NOS PROTEGER DO MAL”
“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO”

https://picasion.com/


sábado, 20 de julho de 2019
Electronic Circuits Doris Kim, Soongsil University
This is an introductory course on the basics of electronic circuits. The covered subjects are DC and AC circuits, diodes, semiconductors, and transistors. The students are required to become familiear with electronic circuits and their roles in modern experimental instruments. Since this is not an engineering course, theoretical or analytical details on electronic circuits will not be covered. Instead, basic concepts of circuit elements and practical methods on how to build electronic circuits will be emphasized.
quinta-feira, 18 de julho de 2019
Design for Reliability of Power Electronics for Grid-Connected Photovoltaic Systems Yongheng Yang, Ariya Sangwongwanich, Frede Blaabjerg
Design for Reliability of Power Electronics for Grid-Connected Photovoltaic Systems Yongheng Yang, Ariya Sangwongwanich, Frede Blaabjerg
Abstract—Power electronics is the enabling technology for optimizing energy harvesting from renewable systems like Photovoltaic (PV) and wind power systems, and also for interfacing grid-friendly energy systems. Advancements in the power semiconductor technology (e.g., wide band-gap devices) have pushed the conversion efficiency of power electronics to above 98%, where however the reliability of power electronics is becoming of high concern. Therefore, it is important to design for reliable power electronic systems to lower the risks of many failures during operation; otherwise will increase the cost for maintenance and reputation, thus affecting the cost of PV energy. Today’s PV power conversion applications require the power electronic systems with low failure rates during a service life of 20 years or even more. To achieve so, it is vital to know the main life-limiting factors of power electronic systems as well as to design for high reliability at an early stage. Knowhow of the loading in power electronics in harsh operating environments (e.g., fluctuating ambient temperature and solar irradiance) is important for life-time prediction, as the prerequisite of Design for Reliability (DfR). Hence, in this paper, the technological challenges in DfR of power electronics for grid-connected PV systems will be addressed, where how the power converters are stressed considering real-field mission profiles. Furthermore, the DfR technology will be systematically exemplified on practical power electronic systems (i.e., gridconnected PV systems). Index Terms—Reliability, design for reliability, power electronics, physics of failure, mission profiles, thermal loading, degradation, Monte Carlo method, photovoltaic systems.
LINK
https://vbn.aau.dk/ws/portalfiles/portal/250508960/Yongheng_Yang_CPSS_Transactions_on_Power_Electronics_and_Applications_CPSS_TPEA_vol.....pdf
terça-feira, 16 de julho de 2019
Oscilloscope measurements in power electronics: II. Differential probe - Prof. Sam Ben-Yaakov
Embedded Computing Design: Pre-Switch Demo in the Lab-Pre-Switch demonstrates their forced-switching AI power technology
This unrehearsed video shows Pre-Switch's James Hamond (CTO) and Derek Kroes (VP Engineering) demonstrating a 10KW full bridge solar inverter running Pre-Switch's AI forced-resonant soft-switching technology (Pre-Flex). Pre-Flex uses a learning AI to predict and generate a forced-resonance voltage waveform, timed accurately to enable zero voltage switching. The demonstration shows discrete IGBTs running at 50Khz at 98.5% efficiency, inverting 320Vdc to 240Vac. Able to work for both IGBT's and wide-bandgap devices, Pre-Flex enables switching losses to be reduced from 80% (IGBT), and 95% (wide-bandgap) enabling up to a 5X to 20X faster Fsw when compared to hard-switched legacy solutions.
LINK
https://www.pre-switch.com
segunda-feira, 15 de julho de 2019
Measuring the Plant Transfer Function of a Digitally Controlled Converter-Dr. Ali Shirsavar
Assinar:
Comentários (Atom)






