AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

GIF 1 GIF 2

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

quinta-feira, 10 de março de 2022

Fabrication and Characterization of Perovskite–Organic Additive Composites for Micro Light-Emitting Diodes-by Do Hoon Kim February 2022 - Department of Materials Science and Engineering and the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy




 

Fabrication and Characterization of Perovskite–Organic Additive Composites for Micro Light-Emitting Diodes
 Dissertation Submitted to the Department of Materials Science and Engineering and the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy 
By Do Hoon Kim --February 2022

ABSTRACT

 Development of micro light-emitting diode (LED) pixel array for ultra-high definition (UHD) displays is underway based on LED semiconductor chips, organic LEDs (OLEDs), and quantum dot LEDs (QLEDs). However, these devices have the drawbacks of high cost and complex processes as well as technical problems. Such as an increase in the cost due to the additional transfer process of semiconductor chips and an inaccuracy of mechanical positioning during repeated transfer process. Moreover, OLEDs have the advantage of being applicable to flexible and stretchable substrates, but require expensive organic materials and large-scale equipment. In case of QLEDs, these are not able to be used as a light source because of unstable electroluminescence (EL) property, thus they are used as color filters with a backplane. So, introduction of candidate of new luminescent materials is urgently needed. The perovskite has an adjustable optical band gap, which can be tuned by changing halide anions in the entire visible region. In particular, a primary advantage of the perovskite is that it can be fabricated by simple solution process at low temperatures and this enables the perovskite to be useful for low-cost and large-area micro LED applications. Furthermore, the perovskite LEDs (PeLEDs) are expected to be suitable for nextgeneration displays because they have exhibited unprecedented improvements of luminescence efficiency in a short time compared to conventional LEDs. However, despite these advantages of perovskites, in the case of CsPbI3 crystals for realizing red emission, a high-temperature post-annealing process is essential for suppressing the formation of δ- phase (tilted octahedral) crystals and promoting the formation of a stable α-phase (cubic). In general, a high-temperature process results in better crystallinity with rapid crystal growth. However, perovskite crystals become large and exhibit many surface defects resulting in a rough surface, long diffusion length of excitons, and dissociation of excitons; these factors lead to non-radiative recombination and a high leakage current. Therefore, several strategies, such as the addition of hydrophilic polymer and ligands to the perovskite precursor, have been studied to prevent the surface defects in PeLEDs. In this dissertation, it was demonstrated that functional groups of poly(2-ethyl-2- oxazoline) (PEOXA) lead to coordination bonds with the metal cations of perovskite. PEOXA can decrease formation temperature of the perovskite nanocrystals and improve phase stability as well. PEOXA added to a CsPbBr0.6I2.4 precursor solution successfully suppressed the formation of δ-phase (tilted octahedral) crystals and promoted the formation of stable α-phase (cubic) CsPbBr0.6I2.4 nanocrystals.

sábado, 19 de fevereiro de 2022

SIMULATION PSPICE SINGLE-PHASE SHUNT ACTIVE POWER FiILTER WITH INDUCTIVE LOAD

                                                                  SCHEMATIC PSPICE


PROBE PSPICE

 

 

                                       PROBE TRIGGER S1 ,S2 ,S3 , S4




sexta-feira, 11 de fevereiro de 2022

Ph.D. Dissertation Fast Transient and High Efficiency Voltage-Regulated PWM Buck Converters Jung-Duk Suh Department of Electrical and Computer Engineering The Graduate School Sungkyunkwan University 2019


 





Ph.D. Dissertation Fast Transient and High Efficiency Voltage-Regulated PWM Buck Converters 

Jung-Duk Suh
 Department of Electrical and Computer Engineering 
The Graduate School Sungkyunkwan University 
2019 

 Abstract Fast Transient and High Efficiency Voltage-Regulated PWM Buck Converters This dissertation proposes three pulse-width modulation (PWM) buck converter architectures; two for fast load transient and one for high efficiency. A fast load transient response for small overshoot or undershoot is very important to designing switching regulator because dynamic voltage scaling is regarded as an effective power management solution. The transient response in the conventional voltage mode converter is limited since a type-3 compensator with large capacitors is used. So, it is important to improve slow transient response problems. Also, improving the efficiency under the light load condition of switching regulators is a very important design because of many portable devices stay in standby mode. In common PWM buck converters, the switching loss is dominant in the light load. So, to improve the performance of PWM buck converters in terms of the light-load efficiency, the switching power consumption should be minimized. In this dissertation, to overcome the speed limitation of the PWM control and the light load efficiency, PWM buck converters that can improve both the load transient response and the light load efficiency are proposed. First, a DC-DC converter with active ramp tracking control (ARTC) is presented. When the difference between the output voltage and reference voltage is increased to the threshold voltage in the load transient situation, the ramp bias voltages change and generate a full duty signal to the power switches. This helps restore the output voltage to the reference voltage, improving the load transient response speed and decreasing the overshoot/undershoot at the output voltage. The proposed converter with ARTC improves the load transient response speed and decreases the overshoot/undershoot at the output voltage. This proposed buck converter with ARTC can reduce the overshoot/undershoot at the output by up to 61.1% and the recovery time up to 60.0 % for a 450-mA load current step. Second, a DC-DC converter with inductor current slope control (ICSC) is presented. In load transient period, the slope of the inductor current is increased two times by connecting the parallel inductor of same size as main inductor. It can recover the output voltage quickly and have a consistent fast response time regardless of the load current step size and output voltage. This proposed buck converter with ICSC simulated in a 65-nm CMOS technology reduces the overshoot/undershoot at the output by up to 54.4% and the recovery time up to 82.6% for a 450-mA load current step. Third, a DC-DC converter with chargerecycling gate-voltage swing control is presented. This proposed converter with charge-recycling gate-voltage swing control can improve the power efficiency by reducing the gate-driving loss at the light load. This proposed converter controls the gate-voltage swing with charge-recycling structure according to the load current and has the gate-driving loss reduced by up to 87.7% and 47.2% compared to the conventional full-swing and low-swing designs, respectively. The maximum power conversion efficiency was 90.3% when the input and output voltages are 3.3 V and 1.8 V, respectively.


DOWNLOAD FULL TEXT:

domingo, 6 de fevereiro de 2022

Active gate switching control of IGBT to improve efficiency in high power density converters- AUTOR Ghorbani, Hamidreza- Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica Document-Doctoral thesis


 Active gate switching control of IGBT to improve efficiency in high power density converters 

 Thesis submitted in partial fulfilment of the requirement for the PhD degree issued by the Universitat Politècnica de Catalunya, in its Electronic Engineering Program 
BY Hamidreza Ghorbani 
Director: Dr. Prof. Jose Luis Romeral Martinez Co-Director: Dr. Eng. Vicent Sala -May 2019 

 Abstract
 Insulated gate bipolar transistor (IGBT) power semiconductors are widely employed in industrial applications. This power switch capability in high voltage blocking and high current-carrying has expanded its use in power electronics. However, efficiency improvement and reducing the size of products is one of main tasks of engineers in recent years. In order to achieve high-density power converters, attentions are focused on the use of fast IGBTs. Therefore, for achieving this desire the trend is designing more effective IGBT gate drivers. In gate drive (GD) controlling, the main issue is maintaining transient behavior of the MOS-channel switch in well condition; when it switches fast to reduce losses. It is well known that fast switching has a direct effect on the efficiency improvement; meanwhile, it is the major reason of appearing electromagnetic interference (EMI) problems in switched-mode power converters. Nowadays the most expectant of an active gate driver (AGD) is actively adjusting the switching transient through simple circuit implementation. Usually its performance is compared with the conventional gate driver (CGD) with fixed driving profile. As a result a proposed AGD has the capability of increasing the switching speed while minimizing the switching stress. Different novel active gate drivers (as feed-forward and closed-loop topologies) have been designed and analysed in this study. To improve the exist trade-off between switching losses and EMI problem, all effective factors on this trade-off are evaluated and considered in proposed solutions. Theoretical developments include proposed controlling methods and simulated efficiency of IGBTs switching control. The efficiency improvement has been pursued with considering EMI study in the proposed active gate controller. Experimental tests have been conducted to verify the design and validate the results. Beside technical aspects, cost study has also considered in the closed-loop GD. The proposed gate drivers are simple enough to allow its use in real industrial applications. 

RESUMEN
 Los semiconductores de potencia (IGBT) se emplean ampliamente en aplicaciones industriales. La capacidad de este interruptor de bloqueo en alta tensión y conducción de alta corriente ha ampliado su uso en la electrónica de potencia. Sin embargo, la mejora de la eficiencia y la reducción del tamaño de los convertidores de potencia es una de las tareas principales de los ingenieros de diseño. Para lograr convertidores de potencia de alta densidad y eficiencia, se requiere el uso de IGBT rápidos. Por lo tanto, la tendencia es diseñar controladores de puerta para IGBT más efectivos. En el control de la unidad de puerta (GD), el problema principal es mantener el comportamiento transitorio del conmutador del canal MOS bajo control, cuando conmuta a lata frecuencia para reducir las pérdidas. Es bien sabido que la conmutación rápida tiene un efecto directo en la mejora de la eficiencia; Sin embargo, la alta frecuencia de conmutación es la razón principal de la aparición de problemas de interferencia electromagnética (EMI) en los convertidores de potencia de modo conmutado. En la actualidad, la acción más directa para un controlador de puerta activo (AGD) consiste en el ajuste activo del transitorio de conmutación a través de la implementación de un circuito simple. Para evaluar su eficiencia, su rendimiento se compara con el controlador de puerta convencional (CGD) con perfil de conducción fijo. Los resultados muestran que la propuesta de AGD tiene la capacidad de aumentar la velocidad de conmutación mientras minimiza el stress. En este estudio se han diseñado y analizado diferentes controladores de puerta activa novedosos (como topologías de control en avance y de bucle cerrado). Para mejorar el balance existente entre la reducción de pérdidas y los problemas de EMI, todos los factores que afectan a las pérdidas y la EMI se evalúan y se consideran en las soluciones propuestas. Los desarrollos teóricos incluyen el análisis y desarrollo de los métodos de control propuestos, la simulación de la operación del control de conmutación del IGBT, y la validación experimental. Además de los aspectos técnicos de eficiencia y emisiones electromagnéticas, el estudio de costes también se ha considerado en los análisis de AGD. Los resultados muestran que los controladores de puerta propuestos son lo suficientemente eficientes y económicos como para permitir su uso en aplicaciones industriales reales [-]
VIEW FULL THESIS:

Active gate drivers for high-frequency application of SiC MOSFETs by Paredes Camacho, Alejandro Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica Doctoral thesis


 Abstract 
The trend in the development of power converters is focused on efficient systems with high power density, reliability and low cost. The challenges to cover the new power converters requirements are mainly concentered on the use of new switching-device technologies such as silicon carbide MOSFETs (SiC). SiC MOSFETs have better characteristics than their silicon counterparts; they have low conduction resistance, can work at higher switching speeds and can operate at higher temperature and voltage levels. Despite the advantages of SiC transistors, operating at high switching frequencies, with these devices, reveal new challenges. The fast switching speeds of SiC MOSFETs can cause over-voltages and over-currents that lead to electromagnetic interference (EMI) problems. For this reason, gate drivers (GD) development is a fundamental stage in SiC MOSFETs circuitry design. The reduction of the problems at high switching frequencies, thus increasing their performance, will allow to take advantage of these devices and achieve more efficient and high power density systems. This Thesis consists of a study, design and development of active gate drivers (AGDs) aimed to improve the switching performance of SiC MOSFETs applied to high-frequency power converters. Every developed stage regarding the GDs is validated through tests and experimental studies. In addition, the developed GDs are applied to converters for wireless charging systems of electric vehicle batteries. The results show the effectiveness of the proposed GDs and their viability in power converters based on SiC MOSFET devices. 
RESUMEN
La tendencia en el diseño y desarrollo de convertidores de potencia está enfocada en realizar sistemas eficientes con alta densidad de potencia, fiabilidad y bajo costo. Los retos para cubrir esta tendencia están centrados principalmente en el uso de nuevas tecnologías de dispositivos de conmutación tales como, MOSFETs de carburo de silicio (SiC). Los MOSFETs de SiC presentan mejores características que sus homólogos de silicio; tienen baja resistencia de conducción, pueden trabajar a mayores velocidades de conmutación y pueden operar a mayores niveles de temperatura y tensión. A pesar de las ventajas de los transistores de SiC, existen problemas que se manifiestan cuando estos dispositivos operan a altas frecuencias de conmutación. Las rápidas velocidades de conmutación de los MOSFETs de SiC pueden provocar sobre-voltajes y sobre-corrientes que conllevan a problemas de interferencia electromagnética (EMI). Por tal motivo, el desarrollo de controladores de puertas es una etapa fundamental en los MOSFETs de SiC para eliminar los problemas a altas frecuencias de conmutación y aumentar su rendimiento. En consecuencia, aprovechar las ventajas de estos dispositivos y lograr sistemas más eficientes y con alta densidad de potencia. En esta tesis, se realiza un estudio, diseño y desarrollo de controladores activos de puerta para mejorar el rendimiento de conmutación de los MOSFETs de SiC aplicados a convertidores de potencia de alta frecuencia. 

 VIEW FULL DOCTORAL THESIS