AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

GIF 1 GIF 2

“GRAÇAS A DEUS PELA VIDA,PELA MINHA FAMÍLIA,PELO TRABALHO.PELO PÃO DE CADA DIA,POR NOS PROTEGER DO MAL”

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO”

https://picasion.com/
https://picasion.com/

sexta-feira, 25 de abril de 2025

Cálculo y diseño de una nueva línea AT aérea de 220 kV-Raúl Romero Arenas Tutor: Raúl Millor Blanco-Grado en Ingeniería Eléctrica -UNIVERSIDAD CARLOS III DE MADRID


 Abstract 
El presente documento recoge los cálculos necesarios para el diseño correcto de una nueva línea de alta tensión aérea de 220 kV. Esta nueva línea de AT ayudará a evacuar la energía producida en las tres plantas solares fotovoltaicas (Picón I, Picón II y Picón III) que trabajan conjuntamente para producir un total de 150 MW de potencia pico. El punto de partida de la línea en cuestión se encuentra en Porzuna, donde se encuentra el centro de transformación de las plantas fotovoltaicas anteriormente mencionadas, y tiene como destino la nueva subestación eléctrica de transformación, que se plantea construir en un futuro cercano, en Pueblonuevo del Bullaque. Debido al aumento de población en Pueblonuevo del Bullaque y a la construcción de nuevas viviendas a causa del éxodo urbano sufrido en la crisis del coronavirus, dicho pueblo pasa a considerarse una ciudad y de esta forma justificar el nivel de tensión elegido. En los apartados siguientes se ahondarán los elementos que constituyen la línea de AT aérea (describiendo las características constructivas), en el estudio que debe realizarse en relación con la seguridad en la ejecución de la obra y en la valoración del presupuesto estimado del proyecto planteado. Por último, es importante mencionar que para el cálculo de los diferentes apartados se ha utilizado el software Excel, para la ubicación de las localizaciones claves y las mediciones de éstas se utilizará tanto Google Maps, como Google Earth Pro. Con relación a los cálculos más complejos en relación con el diseño de la línea y elección de componentes de ésta, se ha trabajado con el software de cálculo de líneas de IMEDEXSA. 
ABSTRACT
This document contains the calculations necessary for the correct design of a new 220 kV overhead high voltage line. This new HV line will help to evacuate the energy produced in the three solar photovoltaic plants (Picón I, Picón II and Picón III) which work together to produce a total of 150 MW of peak power. The starting point of the line in question is in Porzuna, where the transformation centre of the previously mentioned photovoltaic plants is located, and its destination is the new electrical transformation substation to be built in the near future in Pueblonuevo del Bullaque. Due to the increase in population in Pueblonuevo del Bullaque and the construction of new homes as a result of the urban exodus suffered during the coronavirus crisis, this village is now considered a town, justifying the voltage level chosen. The following sections will go into the elements that make up the overhead HV line (describing the construction characteristics), the study to be carried out in relation to safety in the execution of the construction work and the assessment of the estimated budget for the proposed project. Finally, it is important to mention that Excel software has been used for the calculation of the different sections, and both Google Maps and Google Earth Pro will be used for the location of the key locations and their measurements. With relation to the more complex calculations in relation to the design of the line and the choice of its components, IMEDEXSA's line calculation software has been used.

Cálculo de inductancias propias y mutuas entre secciones de un transformador (específico)-


 Abstract Un transformador de potencia es una máquina eléctrica tridimensional formada por múltiples elementos, que en conjunto no presentan simetría. Esto significa, que si se desea calcular cualquier parámetro de la máquina se debe construir un modelo 3D. Sin embargo, el modelado 3D de un transformador requiere de un hardware y un tiempo del que frecuentemente no se dispone, por ello, tradicionalmente se recure a modelos 2D con simetría axial. En esta memoria se implementará el uso de un modelo 2D del trasformador completo equivalente al modelo 2D axisímetrico convencional en un entorno de software de elementos finitos para el cálculo de las inductancias propias y mutuas de un transformador de potencia. Durante la memoria, se irán estableciendo cada una de las características del modelo 2D del transformador completo, o modelo 2D completo, y cada una de las diferencias que se han tenido que adaptar para su uso. A power transformer is a three-dimensional electric machine formed by multiple elements that in conjunction don’t present any symmetry. This means that for any parameter calculation of the machine a 3D model is needed. However, a 3D model of the transformer requires a heavy hardware resources and some time that aren’t usually available, therefore a 2D model with axial symmetry is used. In this memory a 2D complete model of the transformer will be built as an equivalence of the 2D model with axial symmetry in a software environment for infinite element calculations of self-inductance and mutual inductance. Within this memory, all the characteristics of the 2D complete model of the transformer, or 2D complete model, will be set up alongside all the differences of each model and their adaptation for its usage.

sexta-feira, 18 de abril de 2025

Injection-Based Online Capacitance Monitoring With Optimal Selection of Injection Frequency in Buck Converters Xinguo Zhang, Student Member, IEEE, Kang Yue , Student Member, IEEE, Haoyu Wang , Senior Member, IEEE, Junrui Liang , Senior Member, IEEE, and Yu Liu , Senior Member, IEEE


 Injection-Based Online Capacitance Monitoring With Optimal Selection of Injection Frequency in Buck Converters Xinguo Zhang, Student Member, IEEE, Kang Yue , Student Member, IEEE, Haoyu Wang , Senior Member, IEEE, Junrui Liang , Senior Member, IEEE, and Yu Liu , Senior Member, IEEE

 Abstract—The aging process of aluminum electrolytic capacitors leads to a reduction in capacitance, which affects the safe operation of switching power converters. This article proposes an online capacitance monitoring method of Buck converters with high capacitance estimation accuracy. The proposed method does not ask for specific operating condition of the circuit, and does not need to model complex circuit dynamics in time domain. With the measurement errors considered, the article mathematically proves that the minimum error of capacitance estimation can be achieved with maximum sensitivity. Without interrupting the operation of the original system, a small disturbance with a certain frequency is injected to the duty cycle of the switches, to generate additional information for capacitance estimation. To achieve optimal sensitivity for capacitance estimation, the injection frequency is selected as the characteristic frequency based on the transfer function for capacitance estimation. Different candidates of transfer functions are also compared and evaluated to achieve minimum capacitance estimation error. Simulation and hardware experiments verify that optimal parameter sensitivity of capacitance can be achieved at the characteristic injection frequency, and the capacitance can be accurately estimated based on the proposed method.

quinta-feira, 17 de abril de 2025

Modeling of Single-Phase Three-Level Power Factor Correction Converter and Design of Double-Loop Controller-Authors Jun-Hyeok Han ; Il-Song Kim


 The Transactions of the Korean Institute of Power Electronics, Vol. 29, No. 4, August 2024 

Modeling of Single-Phase Three-Level Power Factor Correction Converter and Design of Double-Loop Controller- 단상 3-레벨 역률보상 컨버터의 개선된 모델링 및 더블 루프 제어기 설계 

 Abstract 
 This paper presents the improved modeling of single-phase three-level power factor correction (PFC) converters and the design techniques of double-loop controllers. Conventional single-phase PFC circuits cannot easily be used to design double-loop controllers, due to the 120[Hz] ripple at the output voltage. A paper applying dq transform to a single-phase PFC circuit or research on controller design has been published, but research results on the double-loop controller design have not been clearly presented. The PFC converter having a three-level topology has the advantages of high efficiency and wide control range compared with conventional single-level PFC converters, but designing the double-loop controller is not easy due to the complexity of the control technique. In this paper, we present the research results of applying the single-phase PFC dual-loop controller design technique with 120[Hz] voltage ripple to a three-level topology. A state-space expression applicable to the full duty range was constructed to obtain a transfer function and a double-loop controller design was performed using MATLAB SISOTOOL. The designed controller demonstrated the validity of the design through PSIM simulation, and the designed controller is manufactured and experimented to verify the effectiveness of the system design.

인덕터 집적 평면 변압기의 누설 인덕턴스 계산 강정철1, 정세교✝ Leakage Inductance Calculation of Inductor Integrated Planar Transformer Jung-Cheol Kang1 and Se-Kyo Chung✝


 The Transactions of the Korean Institute of Power Electronics, Vol. 29, No. 6, December 2024 인덕터 집적 평면 변압기의 누설 인덕턴스 계산 강정철1, 정세교✝ Leakage Inductance Calculation of Inductor Integrated Planar Transformer Jung-Cheol Kang1 and Se-Kyo Chung✝

Abstract The design and fabrication of magnetic components is one of the most important issues in realizing high-density switching power converters. An integrated magnetics (IM) technique has been used to reduce the size and cost of the magnetic components. In this technique, a leakage inductance can be used as a series inductor connected to the transformer for applications using resonant techniques, such as LLC resonant converter and other zero-voltage switching converters. The calculation of the leakage inductance is required to accurately control the value of the inductance in designing an IM device. This paper describes the calculation of the leakage inductance for the inductor integrated planar transformer used for the high-density LLC resonant converter. The leakage fluxes through the leakage layer is first considered to calculate the biggest part of the leakage inductance. The windings and insulators are also considered to improve calculation accuracy under the uneven number of windings for the PCB layer. Leakage inductance is calculated using magnetic energy equation and equivalent magnetic circuit. Experimental results are provided to verify the effectiveness of the proposed calculation method. 

VIEW FUL PAPER: http://journal.auric.kr/tkpe/ArticleDetail/RD_R/434290