AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

GIF 1 GIF 2

“GRAÇAS A DEUS PELA VIDA,PELA MINHA FAMÍLIA,PELO TRABALHO.PELO PÃO DE CADA DIA,POR NOS PROTEGER DO MAL”

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO”

https://picasion.com/
https://picasion.com/

sábado, 3 de janeiro de 2026

사고아크검출장치 신뢰성 평가 시스템 및 평가절차 개발 -Development of the Reliability Evaluation System and Procedures for the Arc-Fault Detection Device-이진식(Jinsik Lee) ; 김정기(Jeong-Gi Kim) ; 김재현(Jae-Hyun Kim) ; 전정채(Jeong Chay Jeon)


 

Development of the Reliability Evaluation System and Procedures for the Arc-Fault Detection Device 사고아크검출장치 신뢰성 평가 시스템 및 평가절차 개발 Jinsik Lee · Jeong-Gi Kim · Jae-Hyun Kim · Jeong Chay Jeon


Abstract 
Arc-fault Detection Devices (AFDDs) which cut off the electric power supply under the event of a fire are adopted in many countries to protect life and property from electric fires. However, a controversy over proper or unwanted trips persists for some adopters in the real fields. To alleviate the controversy, this paper describes the reliability evaluation system for AFDD which automates and extends the unwanted tripping test in IEC 62606. The developed reliability evaluation system considers various conditions on the power source quality, the physical state of wiring circuits, and running electrical appliances. System controller automatically switches and repeats numerous pre-designed testing conditions in order not to be constrained by time. Also, it measures the electrical and operating information to give objective evaluation results to stakeholders. Consequently, the proposed AFDD reliability evaluation can produce more detailed conditions which make AFDD to show unwanted trips and it might improve the reliability of AFDDs by upgrading their algorithm to detect electric arc.

terça-feira, 23 de dezembro de 2025

MODELING AND HARDWARE FOR THE IMPLEMENTATION OF AN ELECTRONIC CONTROL UNIT FOR A MAGNETRON Kursakov L. A., Agoev A. Z., Kunashev Z. A., Melyazhev A. A., Gaev D. S.


 

MODELING AND HARDWARE FOR THE IMPLEMENTATION OF AN ELECTRONIC CONTROL UNIT FOR A MAGNETRON Kursakov L. A., Agoev A. Z., Kunashev Z. A., Melyazhev A. A., Gaev D. S. Abstract. The paper presents the results of the development of a magnetron power supply unit for ion sputtering installations of non-magnetic materials, which provides smooth and precise control of magne-tron power at direct current. The operation of the electronic unit was simu-lated in the Multisim software environment. The hardware implementation of the electronic power unit for controlling and powering the magnetron is made on a modern electronic component base. The results of experimental tests of the electronic unit are presented.

sexta-feira, 19 de dezembro de 2025

Dynamic Effect of Input-Voltage Feedforward in Three-Phase Grid-Forming Inverters -Berg, Matias; Roinila, Tomi (2020)-Electrical Engineering, Tampere University, 33720 Tampere, Finland; tomi.roinila@tuni.fi


 ABSTRACT

Grid-connected and grid-forming inverters play essential roles in the utilization of renewable energy. One problem of such a converter system is the voltage deviations in the DC-link between the source and the inverter that can disrupt the inverter output voltage. A common method to prevent these voltage deviations is to apply an input-voltage feedforward control. However, the feedforward control has detrimental effects on the inverter dynamics. It is shown that the effect of the feedforward in the input-to-output dynamics is not ideal due to the delay in the digital control system. The delay affects the input-to-output dynamics at high frequencies, and only a minor improvement can be achieved by low-pass filtering the feedforward control signal. Furthermore, the feedforward control can remarkably affect the inverter input admittance, and therefore, impedance-based stability problems may arise at the DC interface. This paper proposes a method based on linearization and extra element theorem to model the effect of the feedforward control in the inverter dynamics. Experimental measurements are shown to demonstrate the effectiveness of the proposed model. 

 LINK :https://trepo.tuni.fi/handle/10024/217417

domingo, 14 de dezembro de 2025

Design and Implementation of New Oscillating Power Compensator With Improved Control Method Applied to Single-Phase Solar Inverter Pichan, Mohammad; Mousavi, Ameneh; Hafezi, Hosein; Kianifar, Ali (2025-07-13)


 

Design and Implementation of New Oscillating Power Compensator With Improved Control Method Applied to Single-Phase Solar Inverter Pichan, Mohammad; Mousavi, Ameneh; Hafezi, Hosein; Kianifar, Ali (2025-07-13) 

ABSTRACT
 Single-phase power systems inherently exhibit second-harmonic power oscillations, which can degrade photovoltaic (PV) system performance by reducing efficiency, shortening panel lifespan, and increasing AC current harmonic distortion. Conventional compensation techniques often rely on the main inverter topology, require additional passive components, or involve complex control strategies with limited robustness. This paper proposes a fully independent parallel compensator, implemented as a voltage-controlled current source, to effectively suppress PV current ripple. A hybrid control strategy is introduced, combining a proportional-resonant (PR) controller for steady-state error elimination with a Dead-Beat (DB) controller to ensure fast dynamic response. Additionally, a robust LMI-based PR controller is designed to enhance system performance under varying operating conditions. Simulation results demonstrate that the proposed system reduces current ripple from 10 to 0.5 A, offering a simple, efficient, and inverter-independent solution for PV ripple compensation.

Hardware-in-the-Loop Methods for Stability Analysis of Multiple Parallel Inverters in Three-Phase AC Systems Alenius, Henrik; Roinila, Tomi; Luhtala, Roni; Messo, Tuomas; Burstein, Andrew; de Jong, Erik; Fabian, Alejandra (2020)


Hardware-in-the-Loop Methods for Stability Analysis of Multiple Parallel Inverters in Three-Phase AC Systems Henrik Alenius , Member, IEEE, Tomi Roinila , Member, IEEE, Roni Luhtala , Member, IEEE, Tuomas Messo , Member, IEEE, Andrew Burstein, Member, IEEE, Erik de Jong, Senior Member, IEEE, and Alejandra Fabian

Abstract—Modern electric distribution systems typically contain several feedback-controlled parallel inverters that together form a complex power distribution system. Consequently, a number of issues related to stability arise due to interactions among multiple inverter subsystems. Recent studies have presented methods where the stability and other dynamic characteristics of a paralleled inverter system can be effectively analyzed using impedance measurements. This article presents implementation techniques for comprehensive online stability analysis of grid-connected paralleled inverters using power hardware-in-the-loop measurements based on an OPAL-RT real-time simulator. The analysis is based on simultaneous online measurements of current control loop gains of the inverters and the grid impedance, and aggregated terminal admittance measurements of the inverters. The analysis includes the measurement of the inverters’ aggregated output impedance, inverters’ loop gains, global minor loop gain, and grid impedance. The presented methods make it possible to rapidly evaluate the system on both global and local levels in real time, thereby providing means for online stability monitoring or adaptive control of such systems. Experimental measurements are shown from a high-power energy distribution system recently developed at DNV GL, Arnhem, The Netherlands.