AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

quarta-feira, 21 de novembro de 2018

ANALYSIS AND SIMULATION OF PHOTOVOLTAIC SYSTEMS INCORPORATING BATTERY ENERGY STORAGE Oluwaseun Akeyo College of Engineering at the University of Kentucky

















ANALYSIS AND SIMULATION OF PHOTOVOLTAIC SYSTEMS INCORPORATING BATTERY ENERGY STORAGE Oluwaseun Akeyo College of Engineering at the University of Kentucky

A thesis submitted in partial ful llment of the requirements for the degree of Master of Science in Electrical Engineering in the College of Engineering at the University of Kentucky By Oluwaseun Akeyo Lexington, Kentucky

 ABSTRACT OF THESIS ANALYSIS AND SIMULATION OF PHOTOVOLTAIC SYSTEMS INCORPORATING BATTERY ENERGY STORAGE

Solar energy is an abundant renewable source, which is expected to play an increasing role in the grid’s future infrastructure for distributed generation. The research described in the thesis focuses on the analysis of integrating multi-megawatt photovoltaics systems with battery energy storage into the existing grid and on the theory supporting the electrical operation of components and systems. The PV system is divided into several sections, each having its own DC-DC converter for maximum power point tracking and a two-level grid connected inverter with different control strategies. The functions of the battery are explored by connecting it to the system in order to prevent possible voltage fluctuations and as a buffer storage in order to eliminate the power mismatch between PV array generation and load demand. Computer models of the system are developed and implemented using the P SCADTM/EMT DCTM software. KEYWORDS: photovoltaics, battery, energy storage, inverter, solar pump, IEEE 14 bus.

segunda-feira, 12 de novembro de 2018

Seminário Científico de Sistemas de Eletrônica de Potência – SCSEP 2018-11 E 12 DEZEMBRO 2018 Instituto de Eletrônica de Potência (INEP)-FLORIANOPOLIS-UFSC


O Instituto de Eletrônica de Potência (INEP) promoverá o terceiro Seminário Científico de Sistemas de Eletrônica de Potência – SCSEP 2018, evento que ocorrerá nos dias 11 e 12 de dezembro de 2018 no Auditório Luiz Antonio Teixeira, localizado no prédio da Engenharia Elétrica da UFSC, Florianópolis e será organizado por comissão local.

O seminário está programado para receber aproximadamente 100 pessoas, entre alunos e professores da instituição e de outras, assim como profissionais da área que atuam nos setores público e privado. O evento tem como objetivo apresentar e divulgar os últimos avanços da área por meio da ação de alunos e pesquisadores do Instituto, incluindo pós-doutorandos, doutorandos, mestrandos, alunos de iniciação científica e tecnológica e em conclusão de curso de graduação. Tais trabalhos estão sendo desenvolvidos no INEP e se encontram em estágio avançado, representando possíveis soluções para a indústria e possibilitando, assim, a interação entre as partes. No evento serão realizadas também palestras e debates com convidados especialistas da área, com a finalidade de discutir as tendências e demandas atuais para a área de Eletrônica de Potência, bem como suas perspectivas futuras.

LINK ORIGINAL
http://scsep.inep.ufsc.br/

nHPD2 Power Modules - Where Innovation Meets Requirements By Michael Sleven, Hitachi Europe Limited










LINK FULL MAGAZINE
https://www.bodospower.com/

quinta-feira, 8 de novembro de 2018

DISEÑO Y FABRICACIÓN DE BANCO DE CARGAS PARA PRUEBAS DE EQUIPOS DE POTENCIA MONOFÁSICOS Y TRIFÁSICOS Autor: D. David Soto Pérez-UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR








DISEÑO Y FABRICACIÓN DE BANCO DE CARGAS PARA PRUEBAS DE EQUIPOS DE POTENCIA MONOFÁSICOS Y TRIFÁSICOS

 Autor: D. David Soto Pérez Tutor y Director: Dr. D. Antonio Lázaro Blanco Codirector: D. Virgilio Valdivia Guerrero 
 UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR INGENIERIA TÉCNICA INDUSTRIAL: ELECTRÓNICA INDUSTRIAL 

PROYECTO FIN DE CARRERA -BACHELOR THESIS

 CAPÍTULO 1 INTRODUCCIÓN El presente proyecto surge de la idea de realizar un banco de cargas con el cual poder acometer pruebas de equipos de potencia alterna. El tipo de cargas con las que se ha capacitado al banco son resistivas, capacitivas e inductivas. La principal característica con la que se ha querido dotar al banco ha sido la versatilidad. Para poder capacitar al banco de tal versatilidad, se ha utilizado un amplio rango de valores de cargas. Éstas pueden ser combinadas entre ellas mismas dando lugar a un amplio rango de valores posibles. Si con las cargas de las que dispone el armario no fueran suficientes, se ha proporcionado una conexión externa a la salida del equipo para poder conectar cargas externas combinándolas con las cargas internas. Para poder utilizar el banco en diferentes lugares, como puede ser otras universidades o empresas, se ha diseñado en un armario que dispone de la movilidad suficiente para poder ser trasladado de un modo relativamente fácil. Aunque la versatilidad de uso del armario es muy amplia, se han distribuido las elementos de interface con el usuario de tal modo que su utilización sea lo mas sencilla posible, identificando claramente cada uno de los componentes. Uno de los aspectos con los que se ha tenido un especial cuidado ha sido la seguridad del usuario a la hora de trabajar con el banco de cargas, ya que se va a poder trabajar con el utilizando tensiones y corrientes que pueden ser peligrosas para la salud humana. Este aspecto se ha tenido especialmente en cuenta en el diseño del armario y en la evaluación experimental previa al conexionado del banco a tensión.

LINK
https://e-archivo.uc3m.es/handle/10016/16014

sexta-feira, 2 de novembro de 2018

Impact of EV Charging Station on the Electric Distribution Grid Thesis Supervisor: Morris Brenna Department of Energy Politecnico di Milano Master thesis of: Dwaramakki Gaurav Harinarayanan Manimaran













Impact of EV Charging Station on the Electric Distribution Grid Thesis Supervisor: Morris Brenna Department of Energy Politecnico di Milano 
Master thesis of: Dwaramakki Gaurav Harinarayanan Manimaran
POLITECNICO DI MILANO School of Industrial and Information Engineering Master of Science in Electrical Engineering

 ABSTRACT
 Over the past few years, Electric vehicles have become a very important part of the automotive industry as we try to look for a future less dependent on fossil fuels. A lot of research and development has taken place in this field to improve the existing technology and to develop efficient ones. This continued emphasis on research and development has resulted in great improvements in the technology of Electric vehicles. In this thesis, we discuss about the features of Electric Vehicles, the existing protocols to charge the battery systems, the battery management system (BMS), the different standards used in various parts of the world and about the infrastructure that is needed to charge the Electric Vehicles and about the different modes of charging. In the next part of the thesis, we have focussed on the Electric Vehicle and its relationship with the Electric Distribution Grid. Aspects related to PHEV characteristics, Load growth, PHEV Penetration level are looked into. The essence of this thesis is to learn about the Impact of the EV Charging Station on the Electric Distribution Grid. Research papers regarding the impact study of EV Charging station on the Milan Electric Distribution network is considered and discussed. Finally, we look at the Optimisation of EV charging stations which helps in the overall efficiency of the charging process and lessens its impact on the Electric Distribution Grid. In this study we discuss about various control strategies of battery management, charging and the control of inverters.
 1. INTRODUCTION The high energy usage, environmental pollution and rising fossil fuel prices, current dependent on Internal Combustion Engine (ICE) technology must be reduced and alternative fuel which has the potential to solve environmental pollution; global warming and energy sustainability concerns must be explored. Taken consideration that electricity is the most suitable energy for transportation in the next 30 years when considering risk, emissions, availability, maintainability, efficiency and reliability [1]. The invention of automobiles with ICE began in the late 19th century and the automotive industry ever since has seen only incremental changes. ICE remains the prime mover for automobiles with fossil fuel as the main fuel. With the increasing concerns over depletion of natural resources (e.g. oil and gas) and air pollution, governments, automakers and consumers worldwide have been working together to adapt a shift to green transportation. This has spurred intense competition and ongoing revolution in the development of electric vehicles (EVs) and hybrid electric vehicles (HEVs) are an alternative to the internal combustion engine (ICE) vehicles with better efficiency and lower CO2 emissions. Among all EVs and HEVs, electrochemical batteries are core components used for energy storage, similar to the fuel tank in ICE vehicles. Nowadays, EVs represent an interesting solution for the growing dependence from fossil fuels, since they allow a considerable reduction of air pollution. However, the diffusion of EVs is still affected by many issues, which are mainly due to interaction and integration of these types of vehicles with the existing power grid. Moreover, in order to have a wide diffusion on the market of no polluting vehicles, they have to present the characteristics of travel ranges and recharging times comparable to the traditional oil-based fuel vehicles. For these reasons EVs require battery packs characterized by high values of both energy storage capacity and charging rates. From this point of view lithium based batteries represent a very interesting solution, as they are showing a great potential, in recent years, to supply electric vehicles having good performance in terms of acceleration and driving range. Nowadays, new technologies of lithium compounds are available, which permit reaching an specific energy up to 180 Wh/kg and a maximum charging rate of 6 C reducing the charging times up to 10 minutes. Typically, the charging modes at low power are suitable for charging the battery packs during night time of 7-8 hours, ensuring low power requirements for the grid. In fact, recent studies demonstrate that the daily travel range is less than 50 km in 80% of the cases. For this reason such slow recharging would be acceptable for most users ensuring a travel range from 100 to 150 km during the daylight.
LINK FULL THESIS
https://www.politesi.polimi.it/bitstream/10589/120624/1/Thesis_LM.pdf