No Blog Eletrônica de Potência você encontrará informações sobre teses,artigos,seminarios,congressos,tecnologias,cursos,sobre eletrônica potência. “TEMOS O DESTINO QUE MERECEMOS. O NOSSO DESTINO ESTA DE ACORDO COM OS NOSSOS MERITOS” ALBERT EINSTEIN. Imagination is more important than knowledge, for knowledge is limited while imagination embraces the entire world. EL FUTURO SE CONSTRUYE HOY,EL SUCESSO NO ES FRUTO DE LA CASUALIDAD,SE HUMILDE ,APRENDE SIEMPRE CADA DIA.
AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL
"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"
sábado, 3 de fevereiro de 2018
A Novel Analog Circuit Design for Maximum Power Point Tracking of Photovoltaic Panels - Nesrine Mhiri,Abdulrahman Alahdal,Hamza Ghulman, and Anis Ammous
A Novel Analog Circuit Design for Maximum Power Point Tracking of Photovoltaic Panels Nesrine Mhiri,1 Abdulrahman Alahdal,2 Hamza Ghulman,2 and Anis Ammous1,2
1Power Electronics Group (PEG), National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia 2DEE, Umm Al Qura University, Makkah, Saudi Arabia
Advances in Power Electronics Volume 2017 (2017), Article ID 9409801, 9 pages
https://doi.org/10.1155/2017/9409801
1. Introduction
Currently, the production of domestic and industrial energy is based, in large part, on a limited resource: oil. Oil sources are becomingmore andmore rare, while the energy demands of the world rise continually. Since this formof energy covers a large part of the current energy production, it is necessary to find another solution to take over.The imposed constraint is to use an energy source that is economical and less polluting because the protection of the environment has become an important point [1–3]. The search for alternative energy resources has therefore become a crucial issue these days. Many scientific researches have been carried out, not only in the field of nuclear energy production, but also in the sector of unlimited energy sources, such as wind power generation and energy transformation. In the latter case, the design, optimization, and realization of photovoltaic systems are topical issues since they lead to a better exploitation of solar energy [2]. These photovoltaic powers generating systems can be operated in different places: electrification of isolated sites, installation in buildings or direct connection to network of electricity, and so on. A major problem with PV systems is to realize transfer of maximum power from PV generator to load. For several years, manyMPPT controlmethods have been developed and implemented, like Fuzzy Logic Method [4–7], perturbation and observation (P&O) method [5, 6, 8], and Incremental Conductance (Inc.Con.) method [7, 9–11].These techniques are generally complex and expensive to implement [4, 9, 12]. They differ in several aspects like complexity, range of effectiveness, cost, convergence speed, implementation hardware, required sensors, and popularity, plus other respects. However, these techniques are digital implementation. Alternatively, the MPPT can be implemented by analog circuits [13–15]. The potential benefit from analog solution is that theMPPT can be integrated withDC-DCcontroller such that “plug and play” can be expected for many low power PV applications. In fact, integration of certain functions into a normal PWM controller chip is the most desirable way for special applications to reduce the implementation complexity and system cost. In this paper, a new analog MPPT technique suitable for PV system applications is presented and validated by simulations.
LINK ORIGINAL:https://www.hindawi.com/journals/ape/2017/9409801/
DOWNLOAD: http://downloads.hindawi.com/journals/ape/2017/9409801.pdf
Assinar:
Postar comentários (Atom)
The Peak Efficiancy graph snapshot in the post proved very helpful for me, thanks for sharing this useful information here.prototype pcb assembly
ResponderExcluir