AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

domingo, 27 de setembro de 2020

Control Design of a Single-Phase DC/AC Inverter for PV Applications by Haoyan Liu - University of Arkansas, Fayetteville


 Control Design of a Single-Phase DC/AC Inverter for PV Applications A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering by Haoyan Liu

Harbin University of Science and Technology Bachelor of Engineering in Automation, 2012 May 2016 University of Arkansas

Abstrac

This thesis presents controller designs of a 2 kVA single-phase inverter for photovoltaic (PV) applications. The demand for better controller designs is constantly rising as the renewable energy market continues to rapidly grow. Some background research has been done on solar energy, PV inverter configurations, inverter control design, and hardware component selection. Controllers are designed both for stand-alone and grid-connected modes of operation. For standalone inverter control, the outer control loop regulates the filter capacitor voltage. Combining the synchronous frame outer control loop with the capacitor current feedback inner control loop, the system can achieve both zero steady-state error and better step load performance. For grid-tied inverter control, proportional capacitor current feedback is used. This achieves the active damping needed to suppress the LCL filter resonance problem. The outer loop regulates the inverter output current flowing into the grid with a proportional resonant controller and harmonic compensators. With a revised grid synchronization unit, the active power and reactive power can be decoupled and controlled separately through a serial communication based user interface. To validate the designed controllers, a scaled down prototype is constructed and tested with a digital signal processor (DSP) TMS320F28335.

LINK:https://core.ac.uk/download/pdf/80559559.pdf

Nenhum comentário:

Postar um comentário