AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

terça-feira, 22 de dezembro de 2020

A SiC MOSFET Based High Efficiency Interleaved Boost Converter for More Electric Aircraft Haider Zaman†, Xiancheng Zheng, Mengxin Yang, Husan Ali, and Xiaohua Wu,School of Automation, Northwestern Polytechnical University, Xi’an, China


A SiC MOSFET Based High Efficiency Interleaved Boost Converter for More Electric Aircraft Haider Zaman†, Xiancheng Zheng*, Mengxin Yang*, Husan Ali*, and Xiaohua Wu* †,*School of Automation, Northwestern Polytechnical University, Xi’an, China

Abstract Silicon Carbide (SiC) MOSFET belongs to the family of wide-band gap devices with inherit property of low switching and conduction losses. The stable operation of SiC MOSFET at higher operating temperatures has invoked the interest of researchers in terms of its application to high power density (HPD) power converters. This paper presents a performance study of SiC MOSFET based two-phase interleaved boost converter (IBC) for regulation of avionics bus voltage in more electric aircraft (MEA). A 450W HPD, IBC has been developed for study, which delivers 28V output voltage when supplied by 24V battery. A gate driver design for SiC MOSFET is presented which ensures the operation of converter at 250kHz switching frequency, reduces the miller current and gate signal ringing. The peak current mode control (PCMC) has been employed for load voltage regulation. The efficiency of SiC MOSFET based IBC converter is compared against Si counterpart. Experimentally obtained efficiency results are presented to show that SiC MOSFET is the device of choice under a heavy load and high switching frequency operation.

Key words: High Power Density (HPD), Interleaved Boost Converter (IBC), More Electrical Aircraft (MEA), Peak Current Mode Control (PCMC), Silicon Carbide (SiC)

LINK:https://jpels.org/digital-library/manuscript/file/15794/03_JPE-17-06-083.pdf

Nenhum comentário:

Postar um comentário