AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

quarta-feira, 11 de outubro de 2023

A comprehensive design approach for a three-winding planar transformer Shenli Zou1 Chanaka Singhabahu2 Jianfei Chen2 Alireza Khaligh2


A comprehensive design approach for a three-winding planar transformer 

Shenli Zou1 Chanaka Singhabahu2 Jianfei Chen2 Alireza Khaligh2 

1Electric Power Conversion, Rivian Automotive,
Inc, USA
2Maryland Power Electronics Laboratory (MPEL),
Department of Electrical and Computer
Engineering, Institute for Systems Research,
University of Maryland, College Park, Maryland,
USA

 Abstract 

In this paper, a new three-winding planar transformer design with the integrated leakage inductor is proposed for a triple-active-bridge converter. It enables two output voltage levels: a high voltage (HV) output port and a low voltage (LV) output port. The primary and secondary windings are split unevenly in both side legs while the tertiary winding is connected in parallel. The unique winding configuration enables: (i) enhanced efficiency with low volume; and (ii) suppressed parasitic capacitances. Detailed transformer reluctance and loss models are developed in the design process. The core geometry is optimized using a reluctance-model-based mathematical computation. Moreover, comprehensive high-fidelity simulations are conducted to analyse the trade-offs among parasitic capacitances, losses, and inductances. The customized core and the non-overlapping winding boards are assembled, characterized, and tested under various power flow conditions.
VIEW FULL TEXT

Nenhum comentário:

Postar um comentário