AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

quarta-feira, 10 de janeiro de 2024

Farias Martins, Lais (2019) Modelling and Analysis of DC-DC Converters for Bidirectional EV Charging Applications. PhD thesis, University of Sheffield.

Farias Martins, Lais (2019) Modelling and Analysis of DC-DC Converters for Bidirectional EV Charging Applications. 

PhD thesis, University of Sheffield. 

 Abstract This thesis is focused on the modelling and analysis of DC-DC converter topologies used for bidirectional charging of electric vehicles. Bidirectional converters are used in vehicle-to-grid (V2G) systems to allow bidirectional power transfer between the vehicle and the grid. Following the investigation in the literature review of potential converter topologies used in V2G applications and modelling techniques, this research proposes the application of the cyclic-averaging method for analysis of the Dual Active Bridge, 4th order resonant CLLC converter, and series compensated Inductive Power Transfer (IPT) converter. First, the cyclic-averaging method is applied for analysis of a phase-shift modulated Dual Active Bridge converter (DAB). For implementation of the cyclic analysis, the operation of the converter is first analysed using a Spice simulation to determine the system’s operation modes and duty cycles. The cyclic-averaging model is validated against a Spice simulation and employed to predict the converter’s output and to perform harmonic analysis of the inductor current. Following the analysis of the DAB, a 4th order CLLC converter is evaluated considering frequency and phase-shift modulations. The cyclic-averaging model is derived to model the behaviour of the converter’s output and state-variables in steady state. Additionally, a Fundamental Mode Approximation (FMA) model and a novel piecewise-linear state-variable model are also implemented for comparison. The models obtained are validated using Spice and, for the phase-shift modulated converter, experimental results. Finally, the series compensated IPT converter is analysed considering operation under phase-shift modulation. A FMA model is derived and, using circuit transformation, the state-variable and cyclic-averaging models previously defined for the CLLC converter are adapted for the analysis of the IPT converter. A prototype is built for validation of the cyclic model. Overall, for all converters analysed in this research, the cyclic-averaging method showed good performance with considerably fast execution and accuracy similar to Spice simulations.



Nenhum comentário:

Postar um comentário