AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

Mostrando postagens com marcador Uninterruptible power systems; Power electronics; Circuit topology; Modulation; Power conversion; voltage dip; ACAC converter. Mostrar todas as postagens
Mostrando postagens com marcador Uninterruptible power systems; Power electronics; Circuit topology; Modulation; Power conversion; voltage dip; ACAC converter. Mostrar todas as postagens

sábado, 23 de maio de 2015

Switching Loss Reduction of AC-AC Converter using Three-level Rectifier and Inverter for UPS. Kazuki Yoneda, Hiroki Takahashi and Jun-ichi Itoh Dept. of Electrical, Electronics and Information Engineering Nagaoka University of Technology Nagaoka, Niigata, Japan





Abstract— This paper proposes an AC-AC converter, which consists of T-type three-level rectifier and inverter, for an on-line UPS. The switching loss of the proposed AC-AC converter is drastically reduced because the proposed converter is driven at a very low switching frequency which is six times of input side frequency. The T-type rectifier separates the maximum phasevoltage, medium phase-voltage and minimum phase-voltage from the input voltage. Next the output waveform is built by the T-type inverter from each maximum phase-voltage, middle phasevoltage and minimum phase-voltage. The proposed circuit can achieve not only high efficiency, but also short instantaneous interruption time. Furthermore, the proposed AC-AC converter compensates a voltage dip with changing an operation mode of a rectifier. In this paper, the fundamental operation of the proposed converter is confirmed by simulations and experiments. In addition, the power loss of the proposed converter is compared to a conventional on-line UPS and the efficiency of the proposed converter is 97.1% at rated load in an experiment.

FULL PAPER  LINK ORIGINAL NA WEB
http://itohserver01.nagaokaut.ac.jp/itohlab/paper/2014/141105_peac2014/yoneda.pdf
LINK ALTERNATIVO
https://copy.com/LkWFpaxB26DaKPAI