AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

sábado, 18 de fevereiro de 2017

Online Workshop on "LTSpice and Control Loops" -Speaker: Ron Lenk - Date: Thursday, March 16, 2017 Time: 8AM - 2PM PST ​ Location: Online



Date: Thursday, March 16, 2017 Time: 8AM - 2PM PST ​ Location: Online 

 Agenda:​ ​​​ Control loop design for power supplies can be challenging, even for those with a background in analog electronics. Translating from textbook theory to actual designs that can be implemented on a circuit board requires experience that can take years to acquire. ​ In this class we will speed up the process by focusing on practical aspects of simulating and designing control loops for power supplies. In particular, we will be using LTSpice, a free simulator, to compute the necessary feedback system and then verify its design. ​ We start from the basics, explaining practically how to measure the transfer function of the power stage of a power supply. ​ We also spend time showing the basics of LTSpice, and then use it to model the power stage. We look carefully at the potential pitfalls of using modeling. ​ We show how to build both switching models and state-space average models of a power supply in LTSpice. We show how to use the latter to measure the transfer function, and also how to practically do the same thing on the lab bench. ​ We then look at the three main types of feedback control, and build models of these. ​ We combine the two models together and show how to measure the complete transfer function of the power supply, hot to verify its bandwidth and phase margin, and how to do that on the lab bench. ​ Finally, we build a complete switching model of the power supply, and verify its stable performance. ​
​ Who should attend: Power management professionals who want to demystify the control topology to advance their career in their respective areas Marketing and sales people who want to learn the control topology to have a better understanding of the DC-DC converters MS/PhD students who want to learn industry oriented power management knowledge

REGISTER
https://www.learnersplace.com/copy-of-led-system-design-2016-1

sexta-feira, 17 de fevereiro de 2017

La Universidad de Jaén avanza en el estudio y desarrollo de mejoras para sistemas de alta concentración fotovoltaica


 El grupo de Investigación y Desarrollo en Energía Solar y Automática (IDEA) de la Universidad de Jaén trabaja, desde finales de 2013, en el desarrollo de sistemas de muy alta concentración fotovoltaica (HCPV, por sus siglas en inglés) que permiten concentrar la luz solar que reciben las células fotovoltaicas un gran número de veces a través del uso de dispositivos ópticos, con lo que reducen el coste de la energía generada sustituyendo el material semiconductor por lentes más baratas y de tecnología más accesible. Este trabajo forma parte del proyecto concedido al grupo IDEA en el marco del Plan Estatal de Investigación Científica y Técnica de la Innovación 2013-2016 financiado por el Ministerio de Economía y Competitividad (MINECO).

Uno de los resultados más importantes de este proyecto es la publicación del libro “High Concentrator Photovoltaics”, editado por la prestigiosa editorial Springer. Se trata de la primera obra que se centra en la tecnología fotovoltaica de alta concentración, en sus fundamentos, ingeniería y aplicaciones, por lo que se convierte en una referencia a nivel mundial. En este volumen, coordinado por los investigadores de la UJA, Pedro Pérez Higueras y Eduardo F. Fernández, han participado 43 investigadores de este ámbito, miembros de 8 instituciones extranjeras y 5 nacionales.

Portada del libro publicado.

“La HCPV es una tecnología joven pero ya ha demostrado su gran potencial de crecimiento en los últimos años. Sin embargo, todavía no se ha conseguido que los sistemas HCPV puedan competir en precio con la tecnología fotovoltaica convencional”, explica Pedro Pérez Higueras, profesor del Departamento de Ingeniería de la UJA y uno de los responsables de la investigación. En ese sentido, se sitúan los dos principales objetivos del proyecto: por un lado, desarrollar módulos compactos y ligeros con factores de concentración superiores a 2.000 soles (número de veces que se concentra la luz del Sol) y, por otro, desarrollar un sistema de control inteligente basado en sensores que permitan maximizar la potencia generada en los sistemas HCPV.

Hasta el momento, los resultados obtenidos indican un destacado salto en el nivel de concentración. En 2013, los equipos comerciales trabajaban en 500 veces y células de tamaño de 1x1cm. Sin embargo, en la actualidad, ya se están logrando aumentar ese nivel de concentración a 1.000 veces reduciendo el tamaño de las células a 0,5x0,5 cm. “Buscamos que este tipo de tecnología HCPV sea más competitiva, económica y eficiente que la fotovoltaica convencional en una aplicación muy concreta, en lugares con altas temperaturas y mayor exposición a la radiación, como ocurre en zonas del sur de España o del norte de África. De esta forma, se mejora la eficiencia energética un 40%, en torno al doble de la que se consigue actualmente con la tecnología fotovoltaica convencional”, indica Pedro Pérez Higueras.

Este proyecto tendrá continuidad gracias a la concesión al grupo IDEA de un Proyecto de I+D+i del Ministerio de Economía y Competitividad que liderarán como investigadores principales Eduardo F. Fernández y Florencia Almonacid. En él, se pretende resolver los resolver los retos que el desarrollo de la HCPV plantea mediante nuevas arquitecturas de células solares, configuraciones ópticas y mecanismos de refrigeración con el fin de optimizar la conversión eléctrica de la energía procedente del Sol para promover la transición hacia un sistema energético más sostenible.

“En la actualidad, la concentración fotovoltaica es un campo con muchas posibilidades, en el que queda un largo camino por recorrer, para conseguir que esta tecnología sea realmente competitiva para producir electricidad de forma masiva. Para ello, habrá que dedicar grandes esfuerzos en investigación que nos permitan analizar la degradación de los materiales utilizados, incrementar la eficiencia de las células solares y, en definitiva, mejorar su fiabilidad a medio y largo plazo. Es una de las grandes líneas de investigación que estamos desarrollando en la UJA, junto con la optimización del autoconsumo fotovoltaico que persigue conseguir “Edificios carbón cero”, en los que se genera la misma cantidad de energía que se consume. Por último, estamos trabajando también en la realización de proyectos de cooperación como el que está llevando a cabo el profesor Juan de la Casa en colaboración con diferentes universidades peruanas”, señala Jorge Aguilera, catedrático y responsable del grupo IDEA de la UJA.

LINK ORIGINAL DE LA NOTICIA
http://diariodigital.ujaen.es/node/49276

High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants editado por Pedro Pérez-Higueras,Eduardo F. Fernández


LINK
https://books.google.com.br/books?id=b8FOCgAAQBAJ&lpg=PA36&ots=-KhGsYkx2y&dq=High%20Concentrator%20Photovoltaics%20Pedro%20P%C3%A9rez%20Higueras&hl=pt-BR&pg=PA48#v=onepage&q&f=false

GOOGLE DEMO BOOK

quinta-feira, 16 de fevereiro de 2017

Grid Connected Photovoltaic Systems with SmartGrid functionality Henry Benedict Massawe - Norwegian University of Science and Technology -Department of Electric Power Engineering


Abstract This thesis work is part of the NTNU renewable energy laboratory project, “Grid Connected PV Systems with Smart grid functionality”. It solves the problem of shading to the available NTNU PV modules which is sensitive to the exiting central inverter system topology by proposing a PV system which is more efficient and reliable. This thesis is focused on the design of the PV-grid connected inverter power stage that supports the proposed PV system under study. As part of the NTNU renewable energy laboratory project, a single phase 1kW, 230V, dual power stage inverter is designed. The important parameters required for inverter stage including input inductance and capacitance, DC –Link capacitance and LCL filter were designed. In chapters 1 to 2, the PV system overview and grid connected inverter technology is discussed. Photovoltaic characteristics that help the development of a proposed PV system are pointed out. The real scenario of the available NTNU PV system and the challenges facing its poor efficient to generate electricity is explained in Chapter 2. Chapters 3 to 4, present different topologies that are possible in the design of the power stage inverter of which full bridge converter topology is chosen due to its numerous advantages. The significance of dual stage and galvanic isolation to PV-grid inverters is depicted in chapter 3. The energy conversion efficiency, maximum power point tracking, anti-islanding, power quality and cost have been mentioned in Chapter 4 as the most important criteria to be considered when designing any power stage inverter. In chapter 5 the parameters for power stage inverters are estimated and proposed. The boost inductor and input capacitor which are important components to voltage source inverter (VSI) are calculated. Switching scheme and the L-C-L filter is proposed to give a clear sinusoidal output phase voltage of 230V from a DC capacitance bus estimated to handle 400V. The parameters are designed in Multism / NI LabView and the desired output simulation results are discussed in Chapter 6. Lastly, the conclusion of this thesis is made and proposes the scope of the future work. This is the next part of the NTNU renewable energy laboratory project. The proposed control schemes would compromise with the inverter power stage and would results in the smart grid system. The proposed control shall be able to integrate the available renewable energy sources available in the laboratory and shall be implemented in NI LabView.

 LINK ORIGINAL
https://brage.bibsys.no/xmlui/bitstream/handle/11250/257663/653777_FULLTEXT01.pdf?sequence=2&isAllowed=y