AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

https://picasion.com/
https://picasion.com/

segunda-feira, 12 de fevereiro de 2018

UPS ONLINE 10KVA- GRUPO DE PROCESSAMENTO DE ENERGIA E CONTROLE(GEPEC) UNIVERSIDADE FEDERAL CEARA-BRASIL









UPS SINGLE PHASE ONLINE 10KVA DESENVOLVIDO NO GEPEC GPEC- GRUPO DE PROCESSAMENTO DE ENERGIA E CONTROLE DA UNIVERSIDADE FEDERAL DE CEARÁ EM PARCERIA COM A MICROSOL.,TENHO ORGULHO E SATISFAÇÃO DE TER TRABALHADO EM VÁRIOS TRABALHOS COMO ENG.DE PESQUISA DA MICROSOL.

O Grupo de Processamento de Energia e Controle (GPEC), criado em 1995, é ligado ao Departamento de Engenharia Elétrica (DEE) da UFC e tem como objetivo a pesquisa e o desenvolvimento tecnológico em eletrônica de potência. O GPEC atua na proposição de soluções tecnológicas para os setores industriais e de serviço, portanto trabalha em parceria com a indústria nacional, empresas de energia elétrica e institutos de pesquisa no Brasil e no exterior. Os professores e pesquisadores do grupo têm tido atuação destacada no curso de graduação e no programa de pós-graduação em Engenharia Elétrica da UFC, contribuindo na formação e qualificação de profissionais para atuação em áreas como: Sistemas Elétricos de Potência, Eletrônica de Potência, Acionamento Industrial, Qualidade de Energia Elétrica e Aproveitamento de Fontes Renováveis de Energia.
WEBSITE DO GPEC  : http://www.gpec.ufc.br/

UPS SINGLE PHASE 10KVA GRUPO DE PROCESSAMENTO DE ENERGIA E CONTROLE GEPEC FORTALEZA CEARA,UM DOS MAIORES GRUPOS DE PESQUISA DE ELETRÔNICA DE POTENCIA DO BRASIL,PESSOALMENTE ME SINTO MUITO FELIZ DE TER SER PARTE DA HISTORIA VIVA DO DESENVOLVIMENTO DA ELETRÔNICA DE POTENCIA NO BRASIL,MESMO QUE HOJE POR QUESTÕES ECONÔMICAS E POLITICAS QUASE TODOS OS EQUIPAMENTOS SÃO IMPORTADOS E NOSSO DEVER TER SEMPRE NOSSA TECNOLOGIA PRÓPRIA,O PROBLEMA FUNDAMENTAL NÃO E O PROJETO,O PROBLEMA FUNDAMENTAL E A PRODUÇÃO EM ESCALA UNIVERSAL PARA TER PREÇO E SER COMPETITIVOS NO MERCADO,NESTE REQUISITO CHINA ATUALMENTE DOMINA A PRODUÇÃO EM ALTÍSSIMA ESCALA O QUAL E UM GRANDE DESAFIO PARA TODOS.

POWER ELECTRONICS PROF. YONGSUG SUH -PART10-AC-DC CONVERTER 전력전자 및 실험 전북대학교 서용석 - CHONBUCK NATIONAL UNIVERSITY - KOREA OPEN COURSEWARE PART10-





Principles of static power conversion , switching cell structure , DC-DC converter , AC-DC converter , DC-AC converter
POWER ELECTRONICS PROF. YONGSUG SUH - CHONBUCK NATIONAL 
UNIVERSITY - KOREA OPEN COURSEWARE 
PART10- AC-DC converter introduction to Switch-mode Inverter

domingo, 11 de fevereiro de 2018

Power electronics aspects for AC grid connected systems - a revision .-Wilson Komatsu- Escola Politécnica-UNIVERSIDADE DE SÃO PAULO BRASIL


Tese de Livre Docencia DocumentoTese de Livre Docencia
AutorKomatsu, Wilson (Catálogo USP)
Nome completoWilson Komatsu
E-mail E-mailUnidade da USP Escola Politécnica
Área do Conhecimento Eletrônica de Potência
Data de Defesa 2011-09-27
ImprentaSão Paulo, 2011
Banca examinadora Galvão, Luiz Cláudio Ribeiro (Presidente) Kaiser, Walter Kassick, Ênio Valmor Pomilio, José Antenor Suemitsu, Walter Issamu
Título em português
Aspectos de eletrônica de potência em sistemas ligados à rede de corrente alternada - uma revisão.Palavras-chave em português Eletrônica de potência

Resumo em português Vários equipamentos de eletrônica de potência são conectados à rede de corrente alternada (CA), para os mais diversos fins, como conversão de energia, filtragem de corrente e tensão, correção de reativos da rede CA etc. Este trabalho apresenta uma revisão não abrangente, refletindo a experiência do autor, sobre tais equipamentos. São discutidos aspectos de aplicações, modelamento de equipamentos e componentes, controle de conversores, implementação e testes. A abordagem é realizada com o uso de publicações do autor com seus associados, de modo que não se apresenta aqui proposta inédita, mas sim uma integração de conhecimento adquirido.

Título em inglês
Power electronics aspects for AC grid connected systems - a revision
.Palavras-chave em inglês Power electronics
 Resumo em inglês Many power electronics equipment are connected to the alternating current (AC) grid in order to provide different functions, as energy conversion, current and voltage filtering, AC reactive power compensation etc. This work shows an abridged revision, reflecting author's experience, on such equipment. Application aspects, equipment and components modeling, converter control, implementation and tests are discussed. The approach is done using published works from the author with his associates, therefore no unpublished proposal is presented, but instead the acquired knowledge is exposed.

LINK ORIGINAL: http://www.teses.usp.br/teses/disponiveis/livredocencia/3/tde-21052012-181653/es.php
DOWNLOAD: http://www.teses.usp.br/teses/disponiveis/livredocencia/3/tde-21052012-181653/publico//TeseLivreDocenciaWilsonKomatsu.pdf


Wilson Komatsu currently works at the Departamento de Engenharia de Energia e Automação Elétricas (PEA) (POLI), University of São Paulo. Wilson does research in Electronic Engineering and Electrical Engineering. Their most recent publication is 'Digital Control for PLLs Based on Moving Average Filter: Analysis and Design in Discrete Domain.

sábado, 3 de fevereiro de 2018

A Novel Analog Circuit Design for Maximum Power Point Tracking of Photovoltaic Panels - Nesrine Mhiri,Abdulrahman Alahdal,Hamza Ghulman, and Anis Ammous


A Novel Analog Circuit Design for Maximum Power Point Tracking of Photovoltaic Panels Nesrine Mhiri,1 Abdulrahman Alahdal,2 Hamza Ghulman,2 and Anis Ammous1,2 

1Power Electronics Group (PEG), National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia 2DEE, Umm Al Qura University, Makkah, Saudi Arabia
 Advances in Power Electronics Volume 2017 (2017), Article ID 9409801, 9 pages
 https://doi.org/10.1155/2017/9409801

 1. Introduction
 Currently, the production of domestic and industrial energy is based, in large part, on a limited resource: oil. Oil sources are becomingmore andmore rare, while the energy demands of the world rise continually. Since this formof energy covers a large part of the current energy production, it is necessary to find another solution to take over.The imposed constraint is to use an energy source that is economical and less polluting because the protection of the environment has become an important point [1–3]. The search for alternative energy resources has therefore become a crucial issue these days. Many scientific researches have been carried out, not only in the field of nuclear energy production, but also in the sector of unlimited energy sources, such as wind power generation and energy transformation. In the latter case, the design, optimization, and realization of photovoltaic systems are topical issues since they lead to a better exploitation of solar energy [2]. These photovoltaic powers generating systems can be operated in different places: electrification of isolated sites, installation in buildings or direct connection to network of electricity, and so on. A major problem with PV systems is to realize transfer of maximum power from PV generator to load. For several years, manyMPPT controlmethods have been developed and implemented, like Fuzzy Logic Method [4–7], perturbation and observation (P&O) method [5, 6, 8], and Incremental Conductance (Inc.Con.) method [7, 9–11].These techniques are generally complex and expensive to implement [4, 9, 12]. They differ in several aspects like complexity, range of effectiveness, cost, convergence speed, implementation hardware, required sensors, and popularity, plus other respects. However, these techniques are digital implementation. Alternatively, the MPPT can be implemented by analog circuits [13–15]. The potential benefit from analog solution is that theMPPT can be integrated withDC-DCcontroller such that “plug and play” can be expected for many low power PV applications. In fact, integration of certain functions into a normal PWM controller chip is the most desirable way for special applications to reduce the implementation complexity and system cost. In this paper, a new analog MPPT technique suitable for PV system applications is presented and validated by simulations.

LINK ORIGINAL:https://www.hindawi.com/journals/ape/2017/9409801/
DOWNLOADhttp://downloads.hindawi.com/journals/ape/2017/9409801.pdf

quarta-feira, 31 de janeiro de 2018

Inductor Design Method of DCM Interleaved PFC Circuit for 6.6-kW On-board Charger Bong-Gi You*, Byoung-Kuk Lee* and Dong-Hee Kim - Department of Electrical and Computer Engineering, Sungkyunkwan University, Korea



Inductor Design Method of DCM Interleaved PFC Circuit for 6.6-kW On-board Charger Bong-Gi You*, Byoung-Kuk Lee* and Dong-Hee Kim


Corresponding Author: Department of Electrical Engineering, Chonnam National University, Korea. (kimdonghee@jnu.ac.kr) * Department of Electrical and Computer Engineering, Sungkyunkwan University, Korea. (bongary91@gmail.com, bkleeskku@skku.edu) Received: April 6, 2017; Accepted: July 17, 2017

 Abstract – Because the on-board charger (OBC) is installed in electric vehicles (EVs), high power density is regarded as a key technology. Among components of the OBC, inductors occupy more than 30% of the total volume. Thus, it is important to reduce the volume and the weight of inductors while maintaining thermal stability. Discontinuous conduction mode (DCM) can satisfy these requirements; however, only a few studies have adopted the DCM operation for OBCs because of the large inductor current ripple. In this paper, a design process is proposed for application of the DCM operation to OBCs. In order to analyze the inductor losses accurately, a numerical formula for the inductor current ripple is deduced based on a detailed analysis. Two inductors are fabricated using several ferrite cores and powder cores taking into consideration the inductor size, inductor losses, and temperature rise. In order to verify the analysis and design process, experimental results are presented that show that the designed inductors satisfy the requirements of the OBCs

LINK VIEW FULL TEXT
http://www.jeet.or.kr/LTKPSWeb/pub/pubfpfile.aspx?ppseq=1896