No Blog Eletrônica de Potência você encontrará informações sobre teses,artigos,seminarios,congressos,tecnologias,cursos,sobre eletrônica potência. “TEMOS O DESTINO QUE MERECEMOS. O NOSSO DESTINO ESTA DE ACORDO COM OS NOSSOS MERITOS” ALBERT EINSTEIN. Imagination is more important than knowledge, for knowledge is limited while imagination embraces the entire world. EL FUTURO SE CONSTRUYE HOY,EL SUCESSO NO ES FRUTO DE LA CASUALIDAD,SE HUMILDE ,APRENDE SIEMPRE CADA DIA.
AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL
"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"
terça-feira, 3 de dezembro de 2019
STRATEGIES TO DEAL WITH GROUND FAULTS IN GRID-CONNECTED TRANSFORMERLESS PHOTOVOLTAIC CONVERTERS WITH BATTERY ENERGY STORAGE SYSTEM Lucas V. Bellinaso, Ricardo S. Figueredo, Marcelo P. Almeida, Ricardo J. F. Bortolini, Leandro Michels, Ildo Bet, Roberto Zilles Power Electronics and Control Group of the Federal University of Santa Maria, PHB Eletrônica LTDA, Universidade de São Paulo - USP,Brazil
STRATEGIES TO DEAL WITH GROUND FAULTS IN GRID-CONNECTED TRANSFORMERLESS PHOTOVOLTAIC CONVERTERS WITH BATTERY ENERGY STORAGE SYSTEM
Lucas V. Bellinaso, Ricardo S. Figueredo, Marcelo P. Almeida, Ricardo J. F. Bortolini, Leandro Michels, Ildo Bet, Roberto Zilles
Power Electronics and Control Group of the Federal University of Santa Maria,
PHB Eletrônica LTDA,
Universidade de São Paulo - USP,Brazil
Abstract – Grid-connected photovoltaic systems with energy storage, also called PV hybrid mini-grid system (PVHMS), operate in both grid-tied and stand-alone modes and are expected to play an important role in distributed generation. Transformerless photovoltaic converters are most preferred for these systems due to their higher conversion efficiency in comparison to insulated converters, increasing autonomy of the battery energy storage system (BESS). Safety in transformerless photovoltaic converters is a critical issue due to parasitic capacitance between PV modules and ground that could result in high leakage current. Existing safety requirements for grid-tied PV inverters may not be sufficient for PVHMS converters since they have multiple leakage current paths. This study analyzes some leakagecurrent- related faults on transformerless PVHMS converters, and proposes relay opening sequences to avoid unnecessary interruptions of power supply for the local loads. The following situations are analyzed: i) fault at dc side, ii) fault at ac load side, and iii) commutation between on-grid and off-grid operation modes. These faults have been studied for a transformerless PVHMS converter with a single dc-ac stage. Experimental results are presented to validate the proposed schemes and a table summarizing the proposals is presented. Keywords – Electric shock, Photovoltaic power systems, Power electronics, Protective relaying, Uninterruptible power systems.
LINK:https://sobraep.org.br/site/uploads/2019/09/rvol24no03-10-0015-314-322.pdf
segunda-feira, 2 de dezembro de 2019
Várias comitivas de universidades internacionais visitaram a Unicamp em novembro-SÃO PAULO BRASIL
A Unicamp recebeu durante o mês de novembro várias visitas internacionais como parte da sua política de ampliação de cooperação com importantes universidades do mundo. No dia 7, representantes da Leibniz University Hannover, na Alemanha esteve na Universidade com o objetivo de explorar oportunidades de intercâmbio e discutir critérios de intercâmbio cultural baseados nos antecedentes da Cooperação BRICS. No encontro, participaram os professores Celso Kazuyuki Morooka, assessor do Escritório Internacional da Unicamp e Bruno de Conti, diretor do Instituto Unicamp Confúcio, além do senhor Qinxiang Gao, Diretor da BJTU para o Instituto Unicamp Confúcio. No dia 14, representantes das universidades de Lund (Suécia) e Norwegian University of Science and Technology foram recebidos pela administração central da Unicamp. Com a Universidade de Lund discutiu-se possibilidades de colaboração e participaram do encontro os professores Rafael Dias, assessor do Escritório Internacional da Unicamp; Mario Maróstica, da Faculdade de Engenharia de Alimento e Juscelino Tovar, da universidade sueca. A visita da comitiva da Norwegian University of Science and Technology teve como foco estreitar as relações entre as instituições, bem como, ampliar as possibilidades de parcerias. Os representantes noruegueses foram recebidos pela coordenadora geral da Universidade, Teresa Dib Zambon Atvars. A universidade americana Emory University esteve representada no dia 19 pelos professores Tye Tavaras, Eric Weeks, Michael A. Elliott, Philip Wainwright e Jeffrey Lesser. Na Unicamp, foram acompanhados pelo professor Rafael Dias, assessor do Escritório Internacional da Unicamp, em um campus tour pela Universidade.
Dia 25 mais duas visitas de universidades da América Latina estiveram na Unicamp. A Universidad Adolfo Ibañez (Chile) foi recebida pelo reitor Marcelo Knobel e pelos professores Mariano Laplane, diretor executivo da Deri e Marco Aurélio Pinheiro Lima, diretor executivo de Planejamento Integrado (Depi). A comitiva chilena foi composta pelos professores Carlos Jerez, Josefina Poupin e Jocelyn Olivari. O encontro teve como ponto principal promover colaborações futuras.
A Unversidad Nacional de Jaén (Peru), representada por Abner Barzola Cárdenas e Zadith Garrido Campaña, acompanhados por seis alunos, foram recebidos pelos professores Mariano Laplane e Hugo Enrique Hernandez Figueroa, da Faculdade Engenharia Elétrica e de Computação da Unicamp.
LINK ORIGINAL:
https://www.unicamp.br/unicamp/noticias/2019/11/26/varias-comitivas-de-universidades-internacionais-visitaram-unicamp-em-novembro
domingo, 1 de dezembro de 2019
Master's Thesis Multi-powered UPS Department of Electrical Engineering Graduate School, Chonnam National University AUTHOR KIM Jongcheol
Master's Thesis Multi-powered UPS Department of Electrical Engineering Graduate School, Chonnam National University KIM Jongcheol
(Abstract)
As the society develops, load sensitive to power environment such as medical equipment, communication equipment, FA (factory automation) system and data center server is widely used, and reliability and stable supply of power system becomes more important. In particular, electrical equipment used for military purposes is not expected to have any problems in the power supply system during exhibition or operation, so it is becoming necessary to secure a reserve energy source, to duplicate the system or to make surplus system. Even if the reliability of the power supply system is high, momentary power failure due to an accident or a lightning can not be avoided, and there is also a momentary voltage drop (Sag) or a voltage rise (swell) of the power supply. Table 1 below is a definition of the power anomaly phenomenon that appears in the commercial power source shown in IEEE Std 1159TM-2009. In case of power-sensitive load, it is necessary to prepare for system failure because it can cause fatal damage even in short-term system failure. Therefore, there is a need for an uninterruptible power supply (UPS) [1] [2] to compensate for instantaneous voltage fluctuations as well as for blackout situations. Automotive UPS systems typically consist of a single module, such as a battery, bi-directional inverter, high-speed switch, and the UPS module is connected to the vehicle generator and critical loads. If the existing UPS system is composed of a single power source and the UPS system is composed of only one power source, it is difficult to cope with the demand of the main load in the long term only by the output of the UPS when the power source is out of power. To solve this problem, connecting several power sources to a load leads to a large increase in cost due to the connection of UPS to each power source. It is an off-line UPS system that is commonly used. The advantage of the off-line method is that when the input power is normal, there is less generation of electromagnetic waves and noise, and the power consumption is low due to high energy efficiency. In addition, it has a simple circuit configuration, high durability, low cost, and miniaturization compared to on-line. The disadvantage of off-line is that momentary power cut-off occurs in the case of power failure, and the output changes according to the input voltage change during non-operation, making it difficult to adjust the voltage and therefore it is not suitable for high-precision load. In the case of Figure 1, it is composed of a single power source, and if the UPS system consists of only one power source, it is difficult to cope with the demand of the main load in the long term only by the output of the UPS when the power source is outage. In particular, in a system having a purpose for use in a command communication terminal of a military, it is difficult to supply stable power because there are many variables in power supply. In this paper, we propose a multi - power applied UPS system that eliminates the disadvantages of the parallel - connected power supply and has a fast switching time. The UPS system operates in the battery charging mode when the system is in normal operation and operates in the UPS mode, which is the battery discharge mode, in the event of a system failure. In such a mode switching, the follow up of the command voltage should be performed within the shortest time. Since the UPS must supply the same voltage to the load within 4ms in case of a system fault, the switching time and return time must be short when controlling the output voltage and current of the UPS, and the power failure detection time is also important. In addition, since the main loads of the UPS system are mostly time-varying and non-linear loads, it is also necessary to be able to control non-linear loads. Conventionally, a proportional integral (PI) controller has been used as a control method of such a UPS system. The PI controller has a very stable output characteristic in the steady state, but it takes a long time to reach the steady state at the time of mode change or load change due to slow acceleration. Therefore, due to the limit of the transient response characteristic of the controller, it is difficult to perform stable power supply within a short time in the case of a system fault. Also, since the gain of the PI controller affects the response characteristics, response characteristics may be slow or overshoot may occur depending on the gain value selection of the controller. Therefore, in this paper, to compensate the limitation of the proportional integral controller, the controller using the DFT with fast electrostatic sensing characteristics is applied. The control using DFT has an advantage that it can perform fast power failure detection by comparing grid voltage waveform and voltage waveform created by DFT using Schmitt trigger. Therefore, stable power supply is possible when using only PI control in mode switching in UPS system. The multi-power applied UPS system proposed in this paper is finally designed to satisfy the following conditions. In case of system fault, detection method using fast DFT is applied to the electrostatic detection in order to supply stable power to the load in a shorter time than the conventional PI control method. At this time, the switching time of mode switching was set to be less than 4 ms, which is 1/4 of the system cycle, according to KS C 4310 regulation of the uninterruptible power supply in the industry standard council. A 10kW UPS system, in which commercial voltage, vehicle generator, and auxiliary diesel generator can be connected to the proposed switchgear, was tested and validated.
LINK
https://www.mediafire.com/file/6xt8y2r9j7fz25c/Multi-powered_UPS.pdf/file
sexta-feira, 29 de novembro de 2019
A Study on The Control Technique for Modular Three-Phase Uninterruptible Power Supply(UPS) With Boost Converter -Author Jin, Seongmin Dept. of Electrical Engineering Incheon National University-승압기능을 갖는 모듈형 3상 무정전 전원장치(UPS)의 제어기법에 관한 연구
Three-Phase Uninterruptible Power Supply(UPS)
With Boost Converter
승압기능을 갖는 모듈형 3상 무정전
전원장치(UPS)의 제어기법에 관한 연구
Jin, Seongmin
Dept. of Electrical Engineering
Incheon National University
ABSTRACT
This study proposes a control algorithm design and implementation method for the control method of the modular three phase uninterruptible power supply (UPS) with boost function. With the development of the industrial age, there has been an increase in the load required to maintain the constant power source, which has increased the demand for the uninterruptible power supply. In addition, a parallel type uninterruptible power supply unit of a modular type is widely used to satisfy a load of a high capacity It is difficult to apply a desired output voltage to a load by using a 250V DC voltage as the input power source of a UPS used in a power plant system. Therefore, it is necessary to design a module suitable for UPS system for power plant. A UPS for applying 3-phase AC voltage to a load is generally composed of a 3-phase inverter and an output L-C filter. In order to apply this to the power plant system, it is necessary to construct and control a power converter for a single module that boosts the input voltage by applying a boost converter to the input of the inverter to supply the constant voltage to the inverter. In addition, a parallel operation control technique is necessary to solve the problem of connecting such a single module in parallel. Therefore, in this study, the study on the configuration, design and parallel operation control technique for single module UPS for power plant was conducted. The proposed algorithm proved its superior performance and feasibility through simulation and experimental results
Keywords: Uninterruptible power supply, single module power converter for plant, parallel operation control
LINK
https://www.mediafire.com/file/dk35mnbwdaus32x/A_Study_on_The_Control_Technique_for_Modular__three-phase_UPS.pdf/file
segunda-feira, 25 de novembro de 2019
A Study on High Efficiency Technology for Charging of Electric Vehicle -Author Jin-Hak Kim Department of Electronic and Electrical Engineering Graduate School
A Study on High Efficiency Technology for Charging of Electric Vehicle
Author:Jin-Hak Kim
Department of Electronic and Electrical Engineering Graduate School Keimyung University (Supervised by Professor Jun-Ho Kim)
ABSTRACT
As environmental pollution intensifies, government regulations and eco-friendly policies are being strengthened to solve these problems. In the automobile market, research on electric vehicles, which are environmentally friendly automobiles, is becoming active. For the development of electric vehicles, it is essential to build charging infrastructure and develop charging technology for competitive prices. Therefore, in this paper, presents a technology for high efficiency of electric car rapid charger. The conventional rapid charger for electric vehicle, three 20kW AC-DC converters are arranged in parallel, and each 20kW module is composed of one PFC(Power Factor Corrector) and DC-DC converter. Since DC-DC converter directly charges the battery, the efficiency of the DC-DC converter greatly affects the overall fast charger efficiency. Therefore, it is very important to select a DC-DC converter topology suitable for high efficiency and to design an optimum for high-efficiency rapid charger development. The conventional DC-DC converter topologies for electric vehicle rapid chargers have used LLC resonant converters or phase-shift full-bridge converters. Both converters have a fatal disadvantage that can be difficult to achieve with high efficiency and miniaturization in battery charger applications. Therefore, in this paper, we propose a new LLC-Buck DC-DC converter for a rapid charger that can overcome the existing disadvantages. The proposed converter is designed as frequency fixed type at the resonance point by separating the insulation function and the charging function. The buck converter, which is a structure without circulating current, is connected in series. The proposed converter has the following advantages. 1. The switching frequency is fixed to the resonant frequency so that LLC resonant converter operates at the highest efficiency point. Then, ZVS and ZCS are achieved even if the load fluctuates, and the circulating current is minimized. 2. Based on the ZVS and ZCS achievement, a small scale transformer was designed to allow a high frequency operation to be achieved. 3. By using two transformers, it is possible to design more optimally in terms of size than one high-capacity transformer. 4. The series connection of the secondary rectifiers lowered the internal voltage of the secondary rectifiers, reducing costs and losses. These four advantages, it possible to charge the battery with high efficiency throughout the battery charge period, and the efficiency fluctuation is minimized. And high power density can be achieved. As a result of the fabrication and testing of the proposed converter, it was confirmed that the battery is always charged at a high efficiency of 97% in the entire load range. This is more than 1% higher efficiency than conventional frequency-variable converters. As a result of applying the proposed converter to the rapid charger, the high efficiency of 95.242% of the total efficiency was achieved through the high efficiency of the DC-DC converter. Also confirmed that it is competitive in terms of volume through comparison with other companies products. Therefore, the proposed LLC-Buck DC-DC converter is expected to be widely used in electric car chargers requiring high efficiency and small scale.
FULL TEXT LINK
https://www.mediafire.com/file/zlllfzxnxjwwddf/A_Study_on_High_Efficiency_Technology_for_Charging_of_Electric_Vehicle.pdf/file
Assinar:
Postagens (Atom)