AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

sexta-feira, 9 de dezembro de 2016

High Frequency-Link Cycloconverters for Medium Voltage Grid Connection -Shattock, Nicholas -PhD thesis, University of Nottingham.





High Frequency-Link Cycloconverters for Medium Voltage Grid Connection Nicholas Shattock BEng. (Hons) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy 

Abstract
 As the deployment of renewable generation increases in the worldwide electrical grids, the development of distributed energy storage becomes more and more of an essential requirement. Energy storage devices connected at Medium Voltage allows for much higher powered deployments and this Ph.D. will focus on the power converter used to interface the energy storage device to the electrical grid. Multi-level converters can be used to provide this interface without huge ltering requirements or the need of a Low Frequency step up transformer. However traditional Multi-level converter topologies require a large number of electrolytic capacitors, reducing the reliability and increasing the cost. Multi-level converters constructed from a Cycloconverter Topology do not require any additional electrolytic capacitors, however the High Frequency transformer, used to provide isolation has to be considerably larger. This Ph.D. will investigate a novel hybrid converter topology to provide an interface between an energy storage device, such as a super-capacitor or battery, to the Medium Voltage grid, designed for high reliability and power density. This topology is called The Hybrid Cycloconverter Topology and is based on a Cycloconverter Topology connected to an auxiliary 3-Phase VSI. A comprehensive simulation study is carried out to investigate the semiconductor losses of this novel converter topology and compared against two alternative topologies. An experimental converter is constructed to validate the theory of operation and to justify its e ectiveness.

 LINK ORIGINAL
http://eprints.nottingham.ac.uk/14205/1/index2.pdf
LINK ALTERNATIVO
http://www.mediafire.com/file/yeyc074pn02azbq/High_Frequency-Link_Cycloconverters.pdf

Nenhum comentário:

Postar um comentário