AUTOR DO BLOG ENG.ARMANDO CAVERO MIRANDA SÃO PAULO BRASIL

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS DO MAL"

"OBRIGADO DEUS PELA VIDA,PELA MINHA FAMILIA,PELO TRABALHO,PELO PÃO DE CADA DIA,PROTEGENOS  DO MAL"

“SE SEUS PROJETOS FOREM PARA UM ANO,SEMEIE O GRÂO.SE FOREM PARA DEZ ANOS,PLANTE UMA ÁRVORE.SE FOREM PARA CEM ANOS,EDUQUE O POVO.”

“Sixty years ago I knew everything; now I know nothing; education is a progressive discovery of our own ignorance. Will Durant”

sábado, 8 de agosto de 2020

Vieillissement accéléré de modules de puissance de type MOSFET SiC et IGBT Si basé sur l'analyse de profils de mission d'onduleurs photovoltaïques. Mouhannad Dbeiss--Institut Polytechnique de Grenoble

Vieillissement accéléré de modules de puissance de type MOSFET SiC et IGBT Si basé sur l'analyse de profils de mission d'onduleurs photovoltaïques
Autor: Mouhannad Dbeiss 
 Thèse dirigée par Yvan AVENAS, Maître de Conférences HdR, Institut Polytechnique de Grenoble préparée au sein du CEA/INES dans l'École Doctorale Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)

Abstract
In the case of photovoltaic installations, the DC/AC inverter has the highest failure rate, and the anticipation of its breakdowns is still difficult, while few studies have been done on the reliability of this type of inverter. The aim of this PhD is to propose tools and methods to study the ageing of power modules in this type of application, by focusing on ageing phenomena related to thermo-mechanical aspects.
As a general rule, the accelerated ageing of power modules is carried out under aggravated conditions of current (Active Cycling) or temperature (Passive Cycling) in order to accelerate the ageing process. Unfortunately, when applying this type of accelerated ageing tests, some failure mechanisms that do not occur in the real application could be observed, while inversely, other mechanisms that usually occur could not be recreated.
The first part of the PhD focuses on the implementation of an accelerated ageing method of the semiconductor devices inside photovoltaic inverters. This is accomplished by analyzing the mission profiles of the inverter’s output current and ambient temperature, extracted over several years from photovoltaic power plants located in the south of France. These profiles are used to study photovoltaic current dynamics, and are introduced into numerical models to estimate losses and junction temperature variations of semiconductors used in inverters, using the cycle counting algorithm “Rainflow”.
This method is then performed in two experimental test benches. In the first one, the devices under test are IGBT modules, where the accelerated ageing profile designed is implemented using the opposition method. Moreover, an in-situ setup for monitoring ageing indicators (thermal impedance and dynamic resistance) is also proposed and evaluated. The second bench is devoted to study the ageing of SiC MOSFET power modules. The accelerated ageing test is carried out under the same conditions as for the IGBT modules with more monitored electrical indicators, but this time by disconnecting the semiconductor devices from the inverter. The results obtained allowed to determine several potential ageing indicators of IGBTs and SiC MOSFETs used in a photovoltaic inverter.


Nenhum comentário:

Postar um comentário